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Abstract: We continue the study of robustly testable tensor codes and expand the class of
base codes that can be used as a starting point for the construction of locally testable codes
via robustly testable tensor products. In particular, we show that all unique-neighbor ex-
pander codes and all locally correctable codes, when tensored with any other good-distance
code, are robustly testable and hence can be used to construct locally testable codes. Pre-
vious work by Dinur et al. (2006) required stronger expansion properties to obtain locally
testable codes.

Our proofs follow by defining the notion of weakly smooth codes that generalize the
smooth codes of Dinur et al. We show that weakly smooth codes are sufficient for con-
structing robustly testable tensor codes. Using the weaker definition, we are able to expand
the family of base codes to include the aforementioned ones.
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1 Introduction

A linear code over a finite field F is a linear subspace C ⊆ Fn. A code is locally testable if given a word
x ∈ Fn one can verify whether x ∈C by reading only a few (randomly chosen) symbols from x. More
precisely such a code has a tester, which is a randomized algorithm with oracle access to the received
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word x. The tester reads at most q symbols from x and based on this “local view” decides if x ∈C or not.
It should accept codewords with probability one, and reject words that are “far” (in Hamming distance)
with “noticeable” probability.

Locally Testable Codes (LTCs) are intimately related to PCPs and were implicit already in [1] (cf. [9,
Sec. 2.4]). This connection was explicitly studied by Goldreich and Sudan [11]. Since then, several con-
structions of LTCs have been suggested. (See [9] for an extensive survey of those constructions.) All
known efficient constructions of LTCs, i. e., those which achieve subexponential (i. e., exp(o(n))) code
length, rely on some form of “composition” of two (or more) codes. One of the simplest ways to com-
pose codes for the construction of LTCs is by use of the tensor product, as suggested by Ben-Sasson and
Sudan [2]. They introduced the notion of robust LTCs: An LTC is called robustly testable if whenever
the received word is far from the code, the “view” of the tester is far from an accepting view with no-
ticeable probability (see Definition 2.1). Ben-Sasson and Sudan showed in [2] that a code obtained by
tensoring three or more codes is robustly testable when the distances of the codes are big enough, and
used this result to construct LTCs. Then they considered the tensor product of two codes. Given two
linear codes R,C their tensor product R⊗C consists of all matrices whose rows are codewords of R and
whose columns are codewords of C. If R and C are locally testable, we would like R⊗C to be locally
testable. [2] suggested using the following test for the testing of the tensor product R⊗C and asked
whether the tensor product was robustly testable.

Test for R⊗C:

• flip a coin

• if “heads,” select a random row; else select a random column

• accept if the row (column) belongs to R (or C, respectively).

Paul Valiant [16] showed a surprising example of two linear codes R and C for which the test above
is not robust, by exhibiting a word x that is far from R⊗C but such that the rows of x are very close to
R and the columns of x are very close to C. Additional examples give a code whose tensor product with
itself is not robust [5] and two good codes (with constant rate) whose tensor product is not robust [10].

Despite these examples, Dinur et al. showed in [6] that the above test is robust as long as one of
the base codes is smooth, according to a definition of the term introduced there (see Definition 5.1).
The family of smooth codes includes locally testable codes and certain codes constructed from expander
graphs with very good expansion properties. In this work we continue this line of research and enlarge
the family of base codes that result in robustly testable tensor codes and do this by working with a weaker
definition of smoothness (Definition 3.4). Using the weaker definition, we still manage to get similar
results as in [6] and do this using the same proof strategy as there. We are not aware of codes that are
weakly smooth but not smooth, although we conjecture such codes do exist. However, our weaker defi-
nition allows us to argue—in what we view as the main technical contributions of this paper (Section 6
and Section 7)—that a larger family of codes is suitable for forming robustly testable tensor codes. One
notable example is that our definition allows us to argue that any expander code with unique-neighbor
expansion (i. e., with expansion parameter γ < 1/2 as per Definition 2.3) is also weakly smooth, hence
can be used to construct robustly testable tensor products. We stress that unique-neighbor expansion is
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the minimal requirement in terms of expansion needed to argue an expander code has good (i. e., con-
stant relative) distance, using currently known techniques, so our work shows all “combinatorially good”
expander codes1 can be used for the construction of robustly testable tensor products. In comparison, [6]
required stronger expansion parameters (γ < 1/4) of the kind needed to ensure an expander code is not
merely good in terms of its distance, but can also be decoded in linear time [15].

Another family of codes shown here to result in robustly testable tensor products of pairs of codes is
the family of locally correctable codes (LCCs), see Definition 7.1.

We end this section by pointing out that recently, tensor codes have played a role in the combinatorial
construction by Meir [13] of quasilinear length locally testable codes. Better base codes may result in
LTCs with improved rate, hence the importance in broadening the class of base codes that can be used
to construct robustly testable tensor codes.

Organization of the paper.

In the following section we provide the now-standard definitions regarding robustly testable tensor
codes. In Section 3 we formally define weakly smooth codes and state our main results. In Section 4
we prove that weakly smooth codes form robustly testable tensor codes. Section 5 shows the smooth
codes of [6] are also weakly smooth. The last two sections prove that unique-neighbor expander codes
and locally correctable codes are weakly smooth.

2 Preliminary Definitions

Throughout this paper, F is a finite field and C,R⊆ Fn are linear codes over F , i. e., linear subspaces of
Fn. For x ∈ Fn let supp(x) = {i | xi 6= 0} and wt(x) = |supp(x)|. We define the distance between two
words x,y ∈ Fn to be d(x,y) = wt(x−y) and the relative distance to be δ (x,y) = d(x,y)/n. The distance
of a code is denoted d(C) and defined to be the minimal value of d(x,y) for two distinct codewords
x,y ∈ C. Similarly, the relative distance of the code is denoted δ (C) = d(C)/n. For x ∈ Fn and C ⊆
Fn, let δC(x) = miny∈C {δ (x,y)} denote the relative distance of x from code C. We note that d(C) =
minc∈C\{0} {wt(c)}. We let dim(C) denote the dimension of C. The vector inner product between u1 and
u2 is denoted by 〈u1,u2〉. For a code C let

C⊥ = {u ∈ Fn | ∀c ∈C : 〈u,c〉= 0}

be its dual code and let
C⊥

t =
{

u ∈C⊥ | wt(u) = t
}

.

In a similar way we define

C⊥
<t =

{
u ∈C⊥ | wt(u) < t

}
and C⊥

≤t =
{

u ∈C⊥ | wt(u)≤ t
}

.

For w ∈ Fn and S = { j1, j2, . . . , jm} ⊆ [n], where j1 < j2 < .. . < jm, we let w|S = (w j1 ,w j2 , . . . ,w jm) be
the restriction of w to the subset S. We let C|S = {c|S | c ∈C} denote the projection of the code C to the
coordinates corresponding to S.

1Clearly, there exist non-unique-neighbor expander codes with good distance. However, the distance of these codes cannot
be argued merely using the combinatorial structure of the underlying parity check matrix.
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2.1 Tensor Product of Codes

The definitions appearing here are standard in the literature on tensor-based LTCs.
For x ∈ Fm and y ∈ Fn we let x⊗ y denote tensor product of x and y (i. e., the matrix M with entries

M(i, j) = xi · y j where (i, j) ∈ [m]× [n]). Let R ⊆ Fm and C ⊆ Fn be linear codes. We define the tensor
product code R⊗C to be the linear subspace spanned by words r⊗c ∈ Fn×m for r ∈ R and c ∈C. Some
immediate facts:

• The code R⊗C consists of all n×m matrices over F whose rows belong to R and whose columns
belong to C.

• dim(R⊗C) = dim(R) ·dim(C).

• δ (R⊗C) = δ (R) ·δ (C).

Note that the tensor product Fm⊗Fn is the tensor product of codes Fm and Fn. Let M ∈ Fm⊗Fn

and let δ (M) = δR⊗C(M). Let δ
row(M) = δR⊗Fn(M) denote the distance from the space of matrices

whose rows are codewords of R. This is the expected distance of a random row in x from R. Similarly
let δ

col(M) = δFm⊗C(M).

2.2 Robust Locally Testable Codes

Definition 2.1 (Robustness). Let M be a candidate codeword for R⊗C. The robustness of M is defined
as ρ(M) = (δ row(M)+δ

col(M))/2, i. e., it is the average distance of “views” of the codeword. The code
R⊗C is robustly testable if there exists a constant α > 0 such that ρ(M)/δ (M)≥α for every M /∈ R⊗C.

The robustness of a Tester T is defined as

ρ
T = min

M /∈R⊗C

ρ(M)
δR⊗C(M)

.

For further information and the motivation for the notion of robustness see [2, Section 2].

2.3 Low Density Parity Check (LDPC) Codes

Binary as well as q-ary LDPC codes were introduced by Gallager more than four decades ago [7, 8].
They have been studied extensively in information theory (cf. [4]). Binary LDPC codes motivated Mar-
gulis’ explicit construction of graphs of large girth [12], the precursor of his construction of Ramanujan
graphs. The celebrated expander codes of Sipser and Spielman [14] are binary LDPC codes. In the
context of local testability, q-ary LDPC codes were studied in [6].

Definition 2.2 (Check graphs). A check graph ([n], [m],E,e) consists of a bipartite graph ([n], [m],E)
(E ⊆ [n]× [m] is the set of edges) and a function e : E → F \ {0}. This check graph defines the code
C ⊆ Fn via the rule that for all x ∈ Fn

x ∈C ⇐⇒ (∀ j ∈ [m])

(
∑

i∈N( j)
xi · e(i, j) = 0

)
,

where N( j) denotes the set of neighbors of j in the graph.
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Clearly, any linear code C⊆ F has a corresponding check graph. The code C is called a “low-density
parity-check code” over F if C admits a “low-density” check graph. Note that if C⊥ = span(C⊥

≤d) then
without loss of generality every right hand node j ∈ [m] has degree at most d, guaranteeing “low density”
if d is “small.”

Definition 2.3 (Expander graphs). Let c,d ∈ N and let γ,δ ∈ (0,1). Define a (c,d)-regular (γ,δ )-
expander to be a bipartite graph (L,R,E) with vertex sets L,R such that all vertices in L have degree c,
and all vertices in R have degree d; and the additional property that every set L′ ⊂ L of vertices such that
|L′| ≤ δ |L| has at least (1− γ)c|L′| neighbors.

We say that a code C is an (c,d,γ,δ )-expander code if it has a check graph that is a (c,d)-regular
(γ,δ )-expander.

It is well known that if γ < 1/2 then the graph has unique-neighbor expansion. Recall that unique-
neighbor expansion means that for every subset L′ ⊆ L such that 0 < |L′| ≤ δ |L| there exists a vertex
v ∈ R which is a neighbor of exactly one vertex in L′. Thus, from here on we refer to (γ,δ )-expanders,
where γ < 1/2, as unique-neighbor expanders. The following well-known observation (the proof of
which is included for the sake of completeness) shows that unique-neighbor expansion of G is sufficient
to guarantee that the code whose check graph is G has large distance.

Proposition 2.4. If C is a (c,d,γ,δ )-expander code over F and γ < 1
2 then δ (C) > δ .

Proof. We prove that every non-zero word in C must have weight more than δn. Indeed, let (L,R,E,e)
be a check graph of C that is a (c,d)-regular (γ,δ )-expander. The proposition follows by examining the
unique neighbor structure of the graph. Let x ∈C be such that 0 < wt(x)≤ δn and let L′ = supp(x)⊆ L.
But then L′ has at least (1− γ)c|L′|> c

2 |L
′| neighbors in R. At least one of these sees only one element

of L′, so the check by this element (corresponding dual word) will give xi ·e(i, j) when xi 6= 0,e(i, j) 6= 0
and thus xi · e(i, j) 6= 0, violating the corresponding constraint and contradicting x ∈C.

3 Main Results

Our first main result says that codes obtained by the tensor product of a code with constant relative
distance and a unique-neighbor expander code are robustly testable.

Theorem 3.1 (Unique-Neighbor Expander codes). Let R ⊆ Fm be a code of distance at least δR > 0.
Let C ⊆ Fn be a (c,d,γ,δ )-expander code for some c,d ∈ N,δ > 0, and 0 < γ < 1/2. Then,

ρ
T ≥ δ ·δR

5.2d∗

where d ≤ d∗ < dk, k = (log(0.5+γ) 0.05)+1.

The above theorem extends the result of [6] where a similar result was proved for expanders with the
stronger requirement γ < 1/6. Notice the difference between γ < 1/6 and unique-neighbor expansion
(γ < 1/2) is qualitative, not merely quantitative. This is because expansion γ < 1/4 is required to
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guarantee efficient decoding algorithms, as shown by Sipser and Spielman in [15], whereas γ < 1/2 is
sufficient for claiming the code has large distance, but does not necessarily guarantee efficient decoding.

Our next result extends [6] in a different direction by showing that locally correctable codes can
also be used to construct robustly testable tensor codes. Informally, locally correctable codes allow to
recover each entry of a codeword with high probability by reading only a few entries of the codeword
even if a large fraction of it is adversarially corrupted (see Definition 7.1).

Theorem 3.2 (Locally correctable codes). Let R⊆ Fm be a code of distance at least δR > 0. Let C ⊆ Fn

be a (ε,δ ,q)-locally correctable code with ε > 0. Then,

ρ
T ≥ 0.5δ ·δR

2(q+1)
.

To prove both theorems we first define weakly smooth codes and prove that the tensor of a weakly
smooth code and another code with constant relative distance is robustly testable. Then we show that
smooth codes are also weakly smooth. Finally we show in Claims 6.6 and 7.2 that all unique-neighbor
expander codes (with γ < 1/2) and all locally correctable codes are weakly smooth. This will prove
Theorems 3.1 and 3.2.

Remark 3.3. The proofs of Claims 6.6 and 7.2 are similar and rely on the following property shared
by both families of codes. For any small subset I ⊂ [n], most elements i ∈ I have a low-weight dual
constraint ui such that supp(ui)∩ I = {i}, i. e., a large fraction of I has unique neighbors.

3.1 Weakly Smooth codes

We are coming now to the central definition of the paper, that of a weakly smooth code. This defini-
tion allows us to generalize the work of [6] using essentially the same proof as there. In particular, in
Section 5 we show that every code that is smooth according to [6] is also weakly smooth as per Def-
inition 3.4. Furthermore, using our definition we get robustly testable tensor products from a broader
family of base codes.

Both the smooth codes of [6] and our weakly smooth codes require the code to retain large distance
even after a portion of its coordinates and constraints have been removed. The are, however, two subtle
differences between the two notions.

1. In the smooth codes setting an adversary is allowed to remove an arbitrary small fraction of
constraints. In the weakly smooth setting the adversary is further limited to removing a small
fraction of constraints that must touch a small fraction of indices. This extra limitation on the
sets of constraints that can be removed makes it much easier to prove that a given code is weakly
smooth. This difference also accounts for our ability to show that both unique-neighbor expander
codes and locally correctable codes are weakly smooth (neither of the two families of codes is
known to be smooth).

2. In the smooth codes setting we work with a predefined set of low-weight constraints coming from
a regular bipartite graph. Our Definition 3.4 does not assume any graph, nor does it require any
regularity of degrees. This slackness and nonregularity will be crucial in arguing that unique-
neighbor expanders are weakly smooth.
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Definition 3.4 (Weakly smooth codes). Let 0≤ α1 ≤ α ′
1 < 1, 0 < α2 < 1, d∗ be constants. The code C

is (α1,α
′
1,α2,d∗)-weakly smooth if for all subsets I ⊆ [n] of size |I|< α1n, letting

Constr(I) =
{

u ∈C⊥
≤d∗ | supp(u)∩ I = /0

}
and C′ = (Constr(I))

⊥, there exists I′ ⊂ [n], I ⊆ I′, |I′|< α ′
1n such that d(C′|[n]\I′)≥ α2n.

The following is the main technical lemma we use to show that weakly smooth codes can be used to
construct robustly testable tensor products. Its proof, which follows [6], appears in the next section.

Lemma 3.5 (Main Lemma). Let R ⊆ Fm and C ⊆ Fn be codes of relative distance δR and δC, respec-
tively. Assume C is (α1,α

′
1,α2,d∗)-weakly smooth, where α ′

1 < δC/2, and let M ∈ Fm⊗Fn. If

ρ(M) < min
{

α1δR

2d∗
,
δRα2

2

}
then δ (M)≤ 8ρ(M).

4 Weakly smooth codes—Proof of Lemma 3.5

We follow the proof of the Main Lemma in [6], but attend to the required modifications needed to carry
out the proof with the weaker requirement of smoothness. The main place where we use the weakly
smooth property is Proposition 4.2.

Proof of Lemma 3.5. For row i ∈ [n], let ri ∈ R denote a codeword of R closest to the i-th row of M. For
column j ∈ [m], let c( j) ∈ C denote a codeword of C closest to the j-th column of M. Let MR denote
the n×m matrix whose i-th row is ri, and let MC denote the matrix whose j-th column is c( j). Let
E = MR−MC.

In what follows, the matrices MR,MC and (especially) E will be the central objects of attention. We
refer to E as the error matrix. Note that δ (M,MR) = δ

row(M) and δ (M,MC) = δ
col(M) and with some

abuse of notation let wt(E) be the relative weight of E, so

wt(E) = δ (MR,MC)≤ δ (M,MR)+δ (M,MC)
= δ

row(M)+δ
col(M) = 2ρ(M) . (4.1)

Our proof strategy is to show that the error matrix E is actually very structured. We do this in two
steps. First we show that its columns satisfy most low-weight constraints of the column code. Then we
show that E contains a large submatrix which is all zeroes. Finally using this structure of E we show
that M is close to some codeword in R⊗C. The following is from [6, Proposition 4]; we give the proof
for the sake of completeness.

Proposition 4.1. Let u ∈C⊥
d be a constraint of C with supp(u) = {i1, . . . , id}. Let ei denote the i-th row

of E. Suppose wt(ei j) < δR/d for every j ∈ [d]. Then uT ·E = 0.
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Proof. Note that for all c∈C we have 〈c,u〉= 0. Let ci denote the i-th row of the matrix MC. (Recall that
the rows of MC are not necessarily codewords of any nice code—it is only the columns of MC that are
codewords of C). For every column j, we have 〈(MC) j,u〉= 0 (since the columns of MC are codewords
of C).

Thus we conclude that uT ·MC = 0 as a vector. Clearly, uT ·MR ∈ R since each one of the rows of
MR is a codeword of R. But this implies

uT ·E = uT · (MR−MC) = uT ·MR−uT ·MC = uT ·MR−0 ∈ R .

Now we use the fact that the ei j s have small weight for i j ∈ [d]. This implies that

wt(uT ·E) < wt(u) · (δR/d) = δR .

But R is a code of minimum distance δR so the only word of weight less than δR in it is the zero codeword,
yielding uT ·E = 0.

Proposition 4.2. There exist subsets U ⊆ [m] and V ⊆ [n] with |U |/m < δR and |V |/n < δC/2 such that
letting V̄ = [n]\V and Ū = [m]\U we have for all i ∈ V̄ , j ∈ Ū that E(i, j) = 0.

Proof. Let V1 ⊆ [n] be the set of indices corresponding to rows of the error matrix E with weight at least
δR/d∗, i. e.,

V1 = {i ∈ [n] | wt(ei)≥ δR/d∗} .

Clearly, |V1|< α1n, since
|V1|
n
· δR

d∗
≤ wt(E)≤ 2ρ(M)

and thus
|V1|
n

≤ 2ρ(M)
δR/d∗

< α1

where the last inequality follows from the assumption ρ(M) < α1δR
2d∗ . Let

Constr(V1) =
{

u ∈C⊥
≤d∗ | supp(u)∩V1 = /0

}
and let C′ = (Constr(V1))

⊥. Proposition 4.1 implies that ∀u ∈ Constr(V1) we have uT ·E = 0, i. e., every
column of E, denoted by E j, satisfies constraint u and therefore E j ∈C′.

Recall that C is a (α1,α
′
1,α2,d∗)-weakly smooth, where α ′

1 < δC/2. Associate the set V1 with I from
Definition 3.4. Following this definition, there exists a set I′ (let V = I′), |V |= |I′|< α ′

1n, such that

d(C′
[n]\I′) = d(C[n]\V )≥ α2n .

We notice that for every column of E, denoted by E j, we have (E j)|[n]\I′ ∈C[n]\V . Thus E j is either zero
outside V or has at least α2n non-zero elements outside V .

Let U be the set of indices corresponding to the “heavy columns” of E that have α2n or more non-
zero elements in the rows outside V . We conclude that every column of E that is not zero outside V
is located in U . We argue that for each (i, j) ∈ V̄ ×Ū we have E(i, j) = 0. This is true since after we
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remove the rows corresponding to V , all nonzero columns have weight at least α2n. It follows that all
nonzero columns are located in U . Hence all columns of V̄ ×Ū are zero columns.

Clearly, |U |/m < δR, since
|U |
m
·α2 ≤ wt(E)≤ 2ρ(M)

and thus
|U |
m

≤ 2ρ(M)
α2

< δR ,

where the last inequality follows from the assumption ρ(M) < δRα2/2.

Proposition 6 of [6] asserts that under our conditions, M is close to R⊗C. The proof first shows that
MR and MC are close to R⊗C and then uses this to estimate the distance of M to R⊗C. For the sake of
completeness we reproduce the proof from [6].

Proposition 4.3 ([6]). Assume there exist sets U ⊆ [m] and V ⊆ [n], |U |/m < δR and |V |/n < δC/2, such
that MR(i, j) 6= MC(i, j) implies j ∈U or i ∈V . Then δ (M)≤ 8ρ(M).

Proof. Let V̄ = [n] \V and Ū = [m] \U . First we note that there exists a matrix N ∈ R⊗C that agrees
with MR and MC on V̄ ×Ū (see [2, Proposition 3]). Recall also that δ (M,MR) = δ

row ≤ 2ρ(M). So it
suffices to show δ (MR,N) ≤ 6ρ(M). We do so in two steps. First we show that δ (MR,N) ≤ 2ρ(MR).
We then show that ρ(MR)≤ 3ρ(M) concluding the proof.

For the first part we start by noting that MR and N agree on every row in V̄ . This is the case since
both rows (assume r1, r2) are codewords of R which may disagree only on entries from the columns of
U , i. e., supp(r1− r2) ⊆U , but |U | < δRm and thus d(r1,r2) < δRm that means r1 = r2. Next we claim
that for every column j ∈ [m] the closest codeword of C to MR(·, j), the j-th column of MR, is N(·, j),
the j-th column of N. This is true since MR(i, j) 6= N(i, j) implies i ∈V , where |V |< δCn/2 and so the
number of such i is less than δCn/2. Thus for every j, we have N(·, j) is the (unique) decoding of the
j-th column of MR.

Averaging over j, we get that δ col(MR) = δ (MR,N). In turn this yields

ρ(MR)≥ δ (MR)/2 = δ (MR,N)/2 .

This yields the first of the two desired inequalities.
Now to bound ρ(MR), note that for any pair of matrices M1 and M2 we have

ρ(M1)≤ ρ(M2)+δ (M1,M2) . (4.2)

Indeed it is the case that δ row(M1) ≤ δ row(M2) + δ (M1,M2) and δ col(M1) ≤ δ col(M2) + δ (M1,M2).
When the above two arguments are combined it yields (4.2). Applying this inequality to M1 = MR and
M2 = M we get

ρ(MR)≤ ρ(M)+δ (MR,M)≤ 3ρ(M) .

This yields the second inequality and thus the Proposition.

The Main Lemma (Lemma 3.5) follows immediately from the last two propositions.
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5 Smooth codes are also weakly smooth

We now show that our Definition 3.4 is indeed a generalization of smooth codes of Dinur et al. [6]. In
what follows F2 denotes the two-element field and C(R0) is a code defined by constraints in R\R0. We
recall the definition of smooth code.

Definition 5.1 (Smooth Codes). A code C ⊆ Fn
2 is (d,α,β ,δ )-smooth if it has a parity check graph

B = (L,R,E) where all the right vertices have degree d, the left vertices have degree c = d|R|/|L|, and
for every set R0 ⊆ R such that |R0| ≤ α|R|, there exist a set L0 ⊆ L, |L0| ≤ β |L| such that the code
C(R0)|[n]\L0 has distance at least δ .

Claim 5.2. If C ⊆ Fn
2 is a (d,α,β ,δ )-smooth code then it is (α1,α

′
1,α2,d∗)-weakly smooth with α1 =

α/d, α ′
1 = β , α2 = δ , d∗ = d.

Proof. Let R be a set of constraints of degree d and let I ⊆ [n], |I|< α1n = αn/d be the index set from
Definition 3.4. Remove all d-constraints that touch at least one index in I. Let R0 be a set of removed
constraints from R. We have left degree c = d|R|/n, so, we removed at most c ·α1n = d|R|α1 = α|R|
constraints. Let

Constr(I) =
{

u ∈C⊥
d | supp(u)∩ I = /0

}
be the set of constraints in R \R0 (low-weight dual words). We notice that C(R0) = (Constr(I))

⊥. Let
I′ ⊆ [n], |I′|< βn = α ′

1n be the index set from the definition of smooth codes (Definition 5.1) that needs
to be removed in order to maintain good distance, i. e.,

d(C(R0)|[n]\I′)≥ δn = α2n .

Clearly I ⊆ I′ as otherwise d(C(R0)|[n]\I′) = 1. Thus from the definition of smoothness, letting

C′ = (Constr(I))
⊥

we have d(C′|[n]\I′)≥ α2n, which proves that C is (α1,α
′
1,α2,d∗)-weakly smooth.

6 Unique-Neighbor Expander Codes are weakly smooth

As explained in Section 3.1, Dinur et al. [6] showed that expander codes with γ < 1/6 are smooth and
thus result in robustly testable tensor products. In this section we show that it is possible to obtain
robustly testable tensor codes from expander codes under the weaker assumption γ < 1/2. We first
define the gap property (Definition 6.1) and prove that it implies weak smoothness. Then we show that
unique-neighbor expander codes have the gap property.

Definition 6.1 (Gap property). Code C has the (α,δ ,d)-gap property if for all subsets J ⊆ [n], |J|< αn,
letting

Constr(J) =
{

u ∈C⊥
≤d | supp(u)∩ J = /0

}
and C′ = (Constr(J))

⊥ ,

we have that for all vectors c ∈C′|[n]\J either wt(c) < 0.1δn or wt(c) > 0.8δn.
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The next claim generalizes an idea from the proof of [6, Lemma 3].

Claim 6.2. If C has the (α,δ ,d)-gap property then it is (α,α +0.3δ ,0.5δ ,d)-weakly smooth.

Proof. Clearly, C has no codewords of weight between 0.1δn and 0.8δn. To see this take J = /0 and then
the gap property implies that for all words w ∈ Fn if 0.1δn ≤ wt(w) ≤ 0.8δn then 〈w,u〉 6= 0 for some
u ∈C⊥

≤d .
For A⊆C let JA =

⋃
c∈A supp(c). Let

S = {c ∈C | 0 < wt(c) < 0.1δn}

be the set of all non-zero low-weight codewords. We show that |JS|< 0.3δn.
Assume the contrary, i. e., |JS| ≥ δ ·0.3n. Then there exists S′ ⊆ S such that 0.2δn < |JS′ |< 0.3δn.

To see this, remove low-weight words one by one from S, each time decreasing S at most by 0.1δn.
Consider a random linear combination of codewords from S′. The expected weight of this linear

combination is more than 0.1δn but cannot exceed 0.3δn, thus there exists such a linear combination
of low-weight codewords that produces a codeword with weight more than 0.1δn but less than 0.3δn.
Contradiction.

Thus for the rest of the proof we assume |JS| < 0.3δn. We are ready to show that the code C is
(α,α +0.3δn,0.5δn,d)-weakly smooth.

Let I ⊂ [n], |I|< αn be an arbitrarily chosen set. Let

Constr(I) =
{

u ∈C⊥
≤d | supp(u)∩ I = /0

}
and C′ = (Constr(I))

⊥ .

From the definition of the gap property and from the above it follows that for all c ∈C′|[n]\I either
wt(c) < 0.1δn and thus supp(c)⊆ JS or wt(c) > 0.8δn.

Let I′ = JS∪ I. We have |I′| ≤ |JS|+ |I|< αn+0.3δn. We claim that

d(C′|[n]\(I∪JS)) = d(C′|[n]\(I′))≥ 0.5δn .

To see this assume c′ ∈C′|[n]\I , c′′ = c′|[n]\(I∪JS), c′′ ∈C′|[n]\(I∪JS) such that 0 < wt(c′′) < 0.5δn. But then,

0 < wt(c′′)≤ wt(c′)≤ |JS|+wt(c′′) < 0.8δn

and thus c′ is a low-weight word. Therefore supp(c′) ⊆ JS. Hence c′′ = c′|[n]\(I∪JS) = 0, contradicting
wt(c′′) > 0.

Proposition 6.3. Let C be a linear code over F. If u1 ∈C⊥
< f and u2 ∈C⊥

<g and i ∈ supp(u1)∩ supp(u2)
then there exists u3 ∈C⊥

< f +g such that supp(u3)⊆ (supp(u1)∪ supp(u2))\{i}.

Proof. Let a ∈ F be the i-th entry of u1 and b ∈ F be the i-th entry of u2. Then u3 = a−1u1 + b−1u2 ∈
C⊥

< f +g has the desired properties.

The next claim shows that expander codes with γ < 1/2 have specific low-weight constraint struc-
ture. We use this claim later to argue that expander codes with γ < 1/2 have the gap property (Defini-
tion 6.1) and thus are weakly smooth.
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Claim 6.4. Let C be a (c,d,γ,δ )-expander code over F with constant γ < 1/2. Let I ⊆ [n] such
that 0 < |I| < δn. Then at least a 0.95-fraction of indices i ∈ I satisfy ui ∈ C⊥

<d∗ where d∗ < dk,
k = (log0.5+γ(0.05))+1 such that supp(ui)∩ I = {i}.

Proof. Fix I ⊆ [n] with |I| < δn. Let (L,R,E,e) be a check graph of C that is a (c,d)-regular (γ,δ )-
expander; here L = [n] and R = C⊥

≤q. The Claim follows by examining the unique neighbor structure of
the graph. For j = 1, . . . ,k we construct, inductively, sets I j satisfying

• I1 = I, I j+1 ⊂ I j

• |I j+1| ≤ (1
2 + γ)|I j|

• for all i ∈ I j \ I j+1 there exists ui ∈C⊥
≤d j with supp(ui)∩ I = {i}.

We then conclude (1
2 + γ)k < 0.05. Therefore Ik ⊂ I, |Ik|< 0.05 · |I| and for all i ∈ I \ Ik there exists

ui ∈C⊥
<dk with supp(ui)∩ I = {i}. This will complete the proof of the Claim.

For the base case let I1 = I. Since C is an expander and |I1| ≤ δn, I1 has at least

(1− γ)c|I1|=
( c

2
+(0.5− γ)c

)
|I1|

neighbors in R. Each index i ∈ I1 has c neighbors in R. So the number of constraints in R that involve
at least 2 indices from I1 is bounded from above by (c/2)|I1|. Hence there are at least ((1/2− γ)c)|I1|
unique neighbors in R. Since a single index cannot have more than c unique neighbors in R, the number
of indices in I1 having a unique neighbor is at least (1/2− γ)|I1|. This means that at least a (1/2− γ)-
fraction of all indices in I1 have a unique neighbor with support d = d1. Let I2 ⊂ I1 be the subset of all
indices i ∈ I1 that have no unique neighbor of weight at most d1. We constructed sets I1, I2 such that

• I1 = I, I2 ⊂ I1

• |I2| ≤ (1
2 + γ)|I1|

• for all i ∈ I1 \ I2 there exists ui ∈C⊥
≤d1 with supp(ui)∩ I = {i}.

This completes the base case.
Assume correctness up to j− 1 and let us prove it for j. Consider I j, |I j| ≤ |I1| ≤ δn. We say

that u ∈C⊥
d is an I j-restricted unique neighbor of the index i ∈ I j if supp(u)∩ I j = {i}. By the unique

neighbor expansion, at least a (1/2− γ)-fraction of indices i ∈ I j have I j-restricted unique neighbors.
Let I j+1 ⊂ I j be the set of indices i ∈ I j that have no I j-restricted unique neighbor. It follows that
|I j+1| ≤ (1/2+ γ)|I j|.

Fix i ∈ I j \ I j+1 arbitrarily. There exists ui ∈ C⊥
d such that supp(ui)∩ I j = {i}. Every index ` ∈

supp(ui), ` 6= i is located either in [n]\ I1 or in I1 \ I j. We handle all ` ∈ I1 \ I j using linear combination
according to Proposition 6.3 to obtain a constraint u′i ∈C⊥

≤d j such that supp(u′i)∩ I = {i}. This is possible
since every ` ∈ I1 \ I j is located in some I f for 1 ≤ f < j and therefore, by the inductive hypothesis,
satisfies u` ∈C⊥

≤d j−1 such that supp(u`)∩ I = {`}. Since wt(ui)≤ d we obtain u′i ∈C⊥
≤d j−1·d = C⊥

≤d j such
that supp(u′i)∩ I = {i}. So we have shown
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• I j+1 ⊂ I j

• |I j+1| ≤ (1
2 + γ)|I j|

• for all i ∈ I j \ I j+1 there exists ui ∈C⊥
≤d j with supp(ui)∩ I = {i}.

This completes the induction and the proof of Claim 6.4.

Corollary 6.5. If C is a (c,d,γ,δ )-expander code with γ < 1
2 then C has the (0.5δ ,0.5δ ,d∗)-gap prop-

erty where d∗ < dk, k = (log(0.5+γ) 0.05)+1.

Proof. Let J ⊂ [n], |J|< 0.5δ be arbitrarily chosen. Let

Constr(J) =
{

u ∈C⊥
<dk | supp(u)∩ J = /0

}
and C′ = (Constr(J))

⊥ .

Assume by contradiction that there exists w ∈C′
[n]\J such that

0 < 0.1 · (0.5δ )n≤ wt(w)≤ 0.8 · (0.5δ )n .

It follows that there is no u ∈ Constr(J) such that |supp(u)∩ supp(w)|= 1.
Let

I = J∪ supp(w) and |I| ≤ |J|+wt(w) < 0.5δn+0.4δn < δn .

We notice that supp(w)∩ J = /0 and |supp(w)|> 0.05 · |I|. So, by Claim 6.4, there exists u ∈C⊥
<dk such

that |supp(u)∩ supp(w)| = 1 and |supp(u)∩ I| = |supp(u)∩ supp(w)| = 1. Hence u ∈ Constr(J) and
|supp(u)∩ supp(w)|= 1. Contradiction.

Claim 6.6. If C is a (c,d,γ,δ )-expander code with γ < 1
2 then C is (0.5δ ,0.65δ ,0.25δ ,d∗)-weakly

smooth where d∗ < dk, k = (log(0.5+γ) 0.05)+1.

Proof. Follows immediately from Corollary 6.5 and Claim 6.2. Corollary 6.5 implies that C has the
(0.5δ ,0.5δ ,d∗)-gap property where d∗ < dk, k = (log(0.5+γ) 0.05) + 1. Claim 6.2 implies that C is
(0.5δ ,0.5δ +0.15δ ,0.25δ ,d∗)-weakly smooth.

Proof of Theorem 3.1. It is sufficient to prove that

ρ
T ≥min

{
δ ·δR

5.2d∗
,
δ ·δR

10.4
,
1
8

}
because δR,δ ≤ 1 and d∗ ≥ d > 1 and thus

1
8
≥ δ ·δR

10.4
≥ δ ·δR

5.2d∗
.

Let R ⊆ Fm and C ⊆ Fn be codes of distance δR and δC, resp. By Proposition 2.4, δC > δ . Clearly,
C is a (c,d,γ,δ ′)-expander code, where δ ′ = 0.5δ/0.65. Let M ∈ Fm⊗Fn. Claim 6.6 implies that C is
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(0.5δ ′,0.65δ ′,0.25δ ′,d∗)-weakly smooth where 0.65δ ′ = 0.5δ , d ≤ d∗ < dk, k = (log(0.5+γ) 0.05)+1.
The Main Lemma (Lemma 3.5) implies that if

ρ(M) < min
{

(0.5δ ′) ·δR

2d∗
,
δR · (0.25δ ′)

2

}
then δ (M)≤ 8ρ(M).

We conclude that ρ
T ≥min

{
δ ·δR

5.2d∗
,
δ ·δR

10.4
,
1
8

}
.

7 Locally correctable codes are weakly smooth

Definition 7.1 (Locally Correctable Code). A code C ⊆ Fn is called a (q,ε,δ )-locally correctable code
if there exists a randomized decoder (D) that reads at most q entries and the following holds.

• For all c ∈C, i ∈ [n] we have Pr[Dc[i] = ci] = 1.

• For all c ∈C, i ∈ [n] and for all ĉ ∈ Fn such that d(c, ĉ) ≤ δn we have Pr[Dĉ[i] = ci] ≥
1
|F |

+ ε ,

i. e., with probability at least 1
|F | + ε , entry ci will be recovered correctly.

Without loss of generality we assume that given ĉ ∈ Fn, the “correction” of entry i (recovering the
original ci) is done by choosing an arbitrary u ∈C⊥

≤q+1 such that i ∈ supp(u). Formally, assume the i-th
entry of u is ui. Let

uproj = u|[n]\{i} and ĉproj = ĉ|[n]\{i} .

Then ci is recovered by setting

Dĉ[i] =
〈upro j, ĉpro j〉

ui
.

Notice that ui 6= 0. It can be readily verified that if the “correction” of entry i is not done in the way
described then there exists c ∈C such that Pr[Dc[i] = ci] < 1.

The next claim holds for variable ε > 0 (e. g., ε = o(1)) whereas locally correctable codes are usually
defined with a fixed ε .

Claim 7.2. If C is an (ε,δ ,q)-locally correctable code with ε > 0 then it is (0.5δ ,0.5δ ,0.5δ ,q + 1)-
weakly smooth and its relative distance is greater than δ .

Proof. We first show that for all sets I ⊆ [n], |I| ≤ δn, and for all i ∈ I, we have ui ∈ C⊥
≤q+1 with

supp(ui)∩ I = {i}. Assume the contrary and fix I ⊆ [n], |I| ≤ δn and i ∈ I. So, for all ui ∈C⊥
≤q+1 with

i ∈ supp(ui)∩ I, we have |supp(ui)∩ I| ≥ 2. Consider an adversary that takes c ∈ C and sets c j to a
random element from F for each j ∈ I, producing the vector ĉ. Clearly, the original value of ci will
be recovered with probability at most 1

|F | since for every u(i) ∈C⊥
≤q+1 such that i ∈ supp(u(i)) the inner

product
〈(u(i))|[n]\{i},c|[n]\{i}〉

will produce a uniformly distributed random value in F .
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We next show that d(C) > δn. To see this assume c ∈C such that 0 < wt(c)≤ δn. Let I = supp(c),
|I| ≤ δn and i ∈ I. There exists u ∈ C⊥

≤q+1 with supp(u)∩ supp(c) = {i} and thus 〈u,w〉 6= 0 implies
c /∈C.

We finally show the weak smoothness of C. Let I⊂ [n], |I|< 0.5δn be the set chosen by the adversary
and let I′ = I. Let

Constr(I) =
{

u ∈C⊥
≤q+1 | supp(u)∩ I = /0

}
and C′ = (Constr(I))

⊥ .

We claim that d(C′|[n]\I)≥ 0.5δn. This is true, since otherwise there exists c′ ∈C′, c′[n]\I ∈C′|[n]\I such
that 0 < wt(c′[n]\I) < 0.5δn. But then 0 < wt(c′) < 0.5δn + |I| ≤ δn and so there exists u ∈ Constr(I)
such that |supp(u)∩ supp(c′)| = 1 which implies 〈u,c′〉 6= 0 and c′ /∈C′. Contradiction, proving that C
is (0.5δ ,0.5δ ,0.5δ ,q+1)-weakly smooth.

Proof of Theorem 3.2. It is sufficient to show that

ρ
T ≥min

{
0.5δ ·δR

2(q+1)
,
1
8

}
because q ≥ 1, δ ≤ 1 and δR ≤ 1. Let R ⊆ Fm and C ⊆ Fn be linear codes such that δ (R) ≥ δR. Let
M ∈ Fm⊗Fn. Claim 7.2 implies that C is (0.5δ ,0.5δ ,0.5δ ,q + 1)-weakly smooth and δ (C) > δ . The
Main Lemma (Lemma 3.5) implies that if

ρ(M) < min
{

(0.5δ ) ·δR

2(q+1)
,
δR · (0.5δ )

2

}
=

(0.5δ ) ·δR

2(q+1)

then δ (M)≤ 8ρ(M).
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