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Abstract: The approximate degree of a Boolean function f is the least degree of a real
polynomial that approximates f within 1/3 at every point. We prove that the function∧n

i=1
∨n

j=1 xi j, known as the AND-OR tree, has approximate degree Ω(n). This lower bound
is tight and closes a line of research on the problem, the best previous bound being Ω(n0.75).
More generally, we prove that the function

∧m
i=1

∨n
j=1 xi j has approximate degree Ω(

√
mn),

which is tight. The same lower bound was obtained independently by Bun and Thaler (2013)
using related techniques.
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1 Introduction

Over the past two decades, representations of Boolean functions by real polynomials have played
an important role in theoretical computer science. The surveys [7, 31, 10, 32, 1] provide a fairly
comprehensive overview of this body of work. Several kinds of representation [24, 23, 5, 7, 25] have
been studied, depending on the intended application. For our purposes, a real polynomial p represents a
Boolean function f : {0,1}n→{0,1} if

| f (x)− p(x)| ≤ 1
3

for every x ∈ {0,1}n, In other words, we are interested in the pointwise approximation of Boolean
functions by real polynomials. The least degree of a real polynomial that approximates f pointwise within
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1/3 is called the approximate degree of f , denoted deg̃( f ). The constant 1/3 is chosen for aesthetic
reasons and can be replaced by any other in (0,1/2) without affecting the theory in any way.

The formal study of the approximate degree began in 1969 with the seminal work of Minsky and
Papert [23], who famously proved that the parity function in n variables cannot be approximated by
a polynomial of degree less than n. Since then, the approximate degree has been used to solve a vast
array of problems in complexity theory and algorithm design. The earliest use of the approximate degree
was to prove circuit lower bounds and oracle separations of complexity classes [27, 41, 5, 20, 21, 35].
Over the past decade, the approximate degree has been used many times to prove tight lower bounds
on quantum query complexity, e. g., [6, 9, 2, 18]. The approximate degree has enabled remarkable
progress [12, 28, 11, 36, 29, 32] in communication complexity, with complete resolutions of difficult
open problems. The results listed up to this point are of negative character, i. e., they are lower bounds in
relevant computational models. More recently, the approximate degree has found important algorithmic
applications. In computational learning theory, the approximate degree has been used to obtain the
fastest known algorithms for PAC-learning DNF formulas [42, 19] and read-once formulas [4] and the
fastest known algorithm for agnostically learning disjunctions [17]. Another well-known use of the
approximate degree is an algorithm for approximating the inclusion-exclusion formula based on its initial
terms [22, 16, 33, 43].

These applications motivate the study of the approximate degree as a complexity measure in its own
right. As one would expect, methods of approximation theory have been instrumental in determining the
approximate degree for specific Boolean functions of interest [8, 25, 40, 2, 3, 33, 39]. In addition, quantum
query algorithms have been used to prove upper bounds on the approximate degree [15, 43, 4, 30], and
duality-based methods have yielded lower bounds [26, 34, 38]. Nevertheless, our understanding of this
complexity measure remains fragmented, with few general results available [25, 39].

The limitations of known techniques are nicely illustrated by the so-called AND-OR tree,

f (x) =
n∧

i=1

n∨
j=1

xi j .

Despite its seeming simplicity, it has been a frustrating function to analyze. Its approximate degree has
been studied for the past 19 years [25, 40, 15, 3, 34] and has been recently re-posed as an open problem
by Aaronson [1]. Table 1 gives a quantitative summary of this line of research. The best lower and upper
bounds prior to this paper were Ω(n0.75) and O(n), respectively. Our contribution is to close this gap by
improving the lower bound to Ω(n). We obtain the following more general result.

Theorem 1.1 (Main result). The function f (x) =
∧m

i=1
∨n

j=1 xi j has approximate degree

deg̃( f ) = Ω(
√

mn) .

This lower bound is tight for all m and n, by the results of Høyer et al. [15].

1.1 Proof overview

The problem of approximating a given function f pointwise to within error ε by polynomials of degree
at most d can be viewed as a search for a point in the intersection of two convex sets, namely, the
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Bound Reference

O(n) Høyer, Mosca, and de Wolf [15]

Ω(
√

n) Nisan and Szegedy [25]

Ω(
√

n logn) Shi [40]

Ω(n0.66...) Ambainis [3]

Ω(n0.75) Sherstov [34]

Ω(n) This paper

Table 1: Approximate degree of the AND-OR tree.

ε-neighborhood of f and the set of polynomials of degree at most d. As a result, the nonexistence of
an approximating polynomial for f is equivalent to the existence of a so-called dual polynomial for f ,
whose defining properties are orthogonality to degree-d polynomials and large inner product with f .
Geometrically, the dual polynomial is a separating hyperplane for the two convex sets in question.

Our proof is quite short (barely longer than a page). We view f (x) =
∧m

i=1
∨n

j=1 xi j as the component-
wise composition of the functions ANDm and ORn. We use the dual polynomial for ORn to prove the
existence of an operator L with the following properties:

(i) L linearly maps functions {0,1}m×n→ [−1,1] to functions {0,1}m→ [−1,1];

(ii) L decreases the degree of the function to which it is applied by a factor of Ω(
√

n);

(iii) L f ≈ ANDm pointwise.

The existence of L directly implies our main result. Indeed, for any polynomial p that approximates
f pointwise, the polynomial Lp has degree Ω(

√
n) times smaller and approximates ANDm pointwise;

since the latter approximation task is known [25] to require degree Ω(
√

m), the claimed lower bound of
Ω(
√

mn) on the degree of p follows.
What makes the construction of L possible is the following very special property of any dual

polynomial for ORn: it maintains the same sign on OR−1
n (0) and has almost half of its `1 norm there.

We call such dual polynomials one-sided. This property was proved several years ago by Gavinsky and
the author in [14], where it was used to obtain lower bounds for nondeterministic and Merlin-Arthur
communication protocols.

1.2 Independent work by Bun and Thaler

In an upcoming paper, Bun and Thaler [13] independently prove an Ω(
√

mn) lower bound on the
approximate degree of f (x) =

∧m
i=1

∨n
j=1 xi j. The proof in [13] and ours are both based on the fact that

ORn has a one-sided dual polynomial. The two papers differ in how they use this fact to prove an Ω(
√

mn)
lower bound on the approximate degree. The treatment in this paper is a combination of the dual view
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(one-sided dual polynomial for ORn) and the primal view (construction of an approximating polynomial
for ANDm). The treatment in [13] is a refinement of [34] and uses exclusively the dual view (construction
of a dual polynomial for f using dual polynomials for ANDm and ORn). In our opinion, the proof in
this paper has the advantage of being shorter and simpler. On the other hand, the approach in [13] has
the advantage of giving an explicit dual polynomial for f , which is of interest because explicit dual
polynomials have found several uses in communication complexity [32].

2 Preliminaries

For a function f : X→R on a finite set X , we let ‖ f‖∞ =maxx∈X | f (x)|. The total degree of a multivariate
real polynomial p : Rn→ R is denoted deg p. We use the terms degree and total degree interchangeably
in this paper. For a function f : X → R on a finite set X ⊂ Rn, the ε-approximate degree degε( f ) of f is
defined as the least degree of a real polynomial p with ‖ f − p‖∞ ≤ ε . Throughout this paper, we will
work with the ε-approximate degree for a small constant ε > 0. For Boolean functions f : X →{0,1},
the choice of constant 0 < ε < 1/2 affects the quantity degε( f ) by at most a constant factor:

cdeg1/3( f )≤ degε( f )≤C deg1/3( f ) , (2.1)

where c = c(ε) and C =C(ε) are positive constants. By convention, one studies ε = 1/3 as the canonical
case and reserves for it the special symbol deg̃( f ) = deg1/3( f ). A dual characterization [36, 38] of the
approximate degree is as follows.

Fact 2.1. Let f : X → R be given, for a finite set X ⊂ Rn. Then degε( f )≥ d if and only if there exists a
function ψ : X → R such that

∑
x∈X
|ψ(x)|= 1 ,

∑
x∈X

ψ(x) f (x)> ε ,

and

∑
x∈X

ψ(x)p(x) = 0

for every polynomial p of degree less than d.

We adopt the usual definitions of the Boolean functions ANDn,ORn : {0,1}n→{0,1}. Their approx-
imate degree was determined by Nisan and Szegedy [25].

Theorem 2.2 (Nisan and Szegedy). The functions ANDn and ORn obey

deg1/3(ANDn) = deg1/3(ORn) = Θ(
√

n) .

By combining the above two theorems, Gavinsky and the author [14, Thm. 5.1] obtained the following
result, which plays a key role in this paper.
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Theorem 2.3 (Gavinsky and Sherstov). Fix any constant 0 < ε < 1. Then there exists a constant
δ = δ (ε)> 0 and a real function ψ : {0,1}n→ R such that

∑
x∈{0,1}n

|ψ(x)|= 1 , (2.2)

ψ(0,0, . . . ,0)<−1− ε

2
, (2.3)

and

∑
x∈{0,1}n

ψ(x)p(x) = 0 (2.4)

for every polynomial p of degree less than δ
√

n.

For the sake of completeness, we include the proof.

Proof of Theorem 2.3 (adapted from [14]). Recall from Theorem 2.2 that deg1/3(ORn) =Ω(
√

n). There-
fore, (2.1) shows that deg 1−ε

2
(ORn)≥ δ

√
n for a sufficiently small constant δ = δ (ε)> 0. Now the dual

characterization of the approximate degree (Fact 2.1) provides a function ψ : {0,1}n→ R that obeys
(2.2), (2.4), and

∑
x∈{0,1}n

ψ(x)ORn(x)>
1− ε

2
. (2.5)

It remains to verify (2.3):

ψ(0,0, . . . ,0) = ∑
x∈{0,1}n

ψ(x)(1−ORn(x))

=− ∑
x∈{0,1}n

ψ(x)ORn(x) by (2.4)

<−1− ε

2
by (2.5).

For probability distributions µ and λ on finite sets X and Y , respectively, we let µ × λ denote
the probability distribution on X ×Y given by (µ×λ )(x,y) = µ(x)λ (y). The support of a probability
distribution µ is defined to be supp µ = {x : µ(x)> 0}.

3 Main Result

We are now in a position to prove our main result.

Theorem 3.1. The Boolean function f (x) =
∧m

i=1
∨n

j=1 xi j obeys

deg1/3( f ) = Ω(
√

mn) . (3.1)
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Proof. Let ε be an absolute constant to be named later, 0 < ε < 1. Then by Theorem 2.3, there exists a
constant δ = δ (ε)> 0 and a function ψ : {0,1}n→ R that obeys (2.2)–(2.4). Let µ be the probability
distribution on {0,1}n given by µ(x) = |ψ(x)|. Let µ0 and µ1 be the probability distributions induced
by µ on the sets {x : ψ(x) < 0} and {x : ψ(x) > 0}, respectively. Since ∑x∈{0,1}n ψ(x) = 0, the sets
{x : ψ(x)< 0} and {x : ψ(x)> 0} are weighted equally by µ . As a consequence,

µ =
1
2

µ1 +
1
2

µ0 , (3.2)

ψ =
1
2

µ1−
1
2

µ0 . (3.3)

Consider the linear operator L that maps functions φ : ({0,1}n)m→ R to functions Lφ : {0,1}m→ R
according to

(Lφ)(z) = E
x1∼µz1

· · · E
xm∼µzm

φ(x1, . . . ,xm) .

Fix a real polynomial p with

‖ f − p‖∞ ≤ ε . (3.4)

Claim 3.2. ‖ANDm−L f‖∞ < ε .

Claim 3.3. deg p≥ δ
√

n degLp.

Before settling the claims, we finish the proof of the theorem. The linearity of L yields

‖ANDm−Lp‖∞ ≤ ‖ANDm−L f‖∞︸ ︷︷ ︸
<ε

+‖L( f − p)‖∞︸ ︷︷ ︸
≤ε

< 2ε ,

where we have used (3.4) and Claim 3.2 in bounding the marked quantities. For ε = 1/6, we arrive at
‖ANDm−Lp‖∞ ≤ 1/3 and therefore degLp = Ω(

√
m) by Theorem 2.2. Now Claim 3.3 implies that

deg p = Ω(
√

mn).

Proof of Claim 3.2. By (2.3), we have ψ(x)> 0 only when ORn(x) = 1. Hence supp µ1 ⊆ OR−1
n (1) and

(L f )(1,1, . . . ,1) = E
µ1×···×µ1

[ f ] =
m

∏
i=1

E
µ1
[ORn] = 1 .

It remains to prove that |(L f )(z)|< ε for every z 6= (1,1, . . . ,1). We have

(L f )(z) = E
µz1×···×µzm

[ f ] =
m

∏
i=1

E
µzi

[ORn] =
m

∏
i=1

(1−µzi(0,0, . . . ,0)) ,

whence

0≤ (L f )(z)≤ 1−µ0(0,0, . . . ,0) . (3.5)
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We know from (2.3) that ψ(0,0, . . . ,0) < −(1− ε)/2, which means in particular that (0,0, . . . ,0) ∈
supp µ0. Therefore

µ0(0,0, . . . ,0) = 2µ(0,0, . . . ,0) = 2|ψ(0,0, . . . ,0)|> 1− ε ,

where the first step uses (3.2). By (3.5), we conclude that 0≤ (L f )(z)< ε .

Proof of Claim 3.3. By the linearity of L, it suffices to consider factored polynomials p of the form
p(x) = ∏

m
i=1 pi(xi,1,xi,2, . . . ,xi,n). In this case we have the convenient formula

(Lp)(z) =
m

∏
i=1

E
µzi

[pi] .

By (2.4) and (3.3), polynomials pi of degree less than δ
√

n obey Eµ0 [pi] = Eµ1 [pi] and therefore do not
contribute to the degree of Lp. As a result,

degLp≤ |{i : deg pi ≥ δ
√

n}| ≤ deg p
δ
√

n
.

Using the pattern matrix method [36], one can immediately translate the main result of this paper into
lower bounds on communication complexity. For example, it follows that the two-party communication
problem f (x,y) =

∧m
i=1

∨n
j=1(xi j ∧ yi j) has bounded-error quantum complexity Ω(

√
mn), regardless of

prior entanglement. We refer the interested reader to [36, 38, 37] for further details and applications.
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