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Abstract. We initiate the study of sublinear-time algorithms that access their input

via an online adversarial erasure oracle. After answering each input query, such

an oracle can erase C input values. Our goal is to understand the complexity of

basic computational tasks in extremely adversarial situations, where the algorithm’s

access to data is blocked during the execution of the algorithm in response to its

actions. Specifically, we focus on property testing in the model with online erasures.

We show that two fundamental properties of functions, linearity and quadraticity,

can be tested for constant C with asymptotically the same complexity as in the

standard property testing model. For linearity testing, we prove tight bounds in

terms of C, showing that the query complexity is Θ(log C). In contrast to linearity and

quadraticity, some other properties, including sortedness and the Lipschitz property

of sequences, cannot be tested at all, even for C = 1. Our investigation leads to a

deeper understanding of the structure of violations of linearity and other widely

studied properties. We also consider implications of our results for algorithms that

are resilient to online adversarial corruptions instead of erasures.
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1 Introduction

We initiate the study of sublinear-time algorithms that compute in the presence of an online

adversary that blocks access to some data points in response to the algorithm’s queries. A

motivating scenario is when a user wishes to remove their data from a dataset due to privacy

concerns, as enabled by right to be forgotten laws such as the EU General Data Protection

Regulation [48]. The online aspect of our model suitably captures the case of individuals who

are prompted to restrict access to their data after noticing an inquiry into their or others’ data.

The user could decide to remove their data after noticing, for example, that their phone number

is available on websites that scrape personal contact information. We choose to model such

user actions as adversarial in order to perform worst-case analysis and refrain from making

distributional and other assumptions on how the data access is affected. We give two other

motivating scenarios that are naturally adversarial and justify a worst-case analysis. In one, an

algorithm is trying to detect some fraud (e.g., tax fraud) and the adversary wants to obstruct

access to data in order to make it hard to uncover any evidence. In the other scenario, an

algorithm’s goal is to determine an optimal course of action (e.g., whether to invest in a stock or

to buy an item), whereas the adversary leads the algorithm astray by adaptively blocking access

to pertinent information.

In our model, after answering each query to the input object, the adversary can hide a small

number of input values. Our goal is to understand the complexity of basic computational tasks

in extremely adversarial situations, where the algorithm’s access to data is blocked during the

execution of the algorithm in response to its actions. Specifically, we represent the input object

as a function 5 on an arbitrary finite domain1, which the algorithm can access by querying a

point G from the domain and receiving the answer O(G) from an oracle. At the beginning of

computation, O(G) = 5 (G) for all points G in the domain of the function. We parameterize our

model by a natural number C that controls the number of function values the adversary can

erase after the oracle answers each query2. Mathematically, we represent the oracle and the

adversary as one entity. However, it might be helpful to think of the oracle as the data holder

and of the adversary as the obstructionist. A C-online-erasure oracle can replace values O(G) on
up to C points G with a special symbol ⊥, thus erasing them. The new values will be used by

the oracle to answer future queries to the corresponding points. The locations of erasures are

unknown to the algorithm. The actions of the oracle can depend on the input, the queries made

so far, and even on the publicly known code that the algorithm is running, but not on future

coin tosses of the algorithm.

We focus on investigating property testing in the presence of online erasures. In the

1Input objects such as strings, sequences, images, matrices, and graphs can all be represented as functions. For

example, an = × = real-valued matrix is equivalent to a function mapping [=]2 to ℝ.

2If the adversary were allowed to erase the query of the algorithm before answering it, the algorithm would

only see erased values. We give several motivating scenarios for the adversarial behavior in our model. The first

example is a situation where the adversary reacts by deleting additional data after some bank records are pulled by

authorities as part of an investigation. In the GDPR example mentioned previously, we argued that individuals

could be prompted to restrict access to their data only after noticing an inquiry into their or others’ data. Finally, in a

legal setting, if the adversary is served a subpoena, they are legally bound to answer the query, but could nonetheless

destroy related evidence that is not included in the subpoena.
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property testing model, introduced by [64, 37] with the goal of formally studying sublinear-time

algorithms, a property is represented by a set P (of functions satisfying the desired property). A

function 5 is �-far from P if 5 differs from each function , ∈ P on at least an � fraction of domain

points. The goal is to distinguish, with constant probability, functions 5 ∈ P from functions that

are �-far from P .We call an algorithm a C-online-erasure-resilient �-tester for property P if, given

parameters C ∈ ℕ and � ∈ (0, 1), and access to an input function 5 via a C-online-erasure oracle,

the algorithm accepts with probability at least 2/3 if 5 ∈ P and rejects with probability at least

2/3 if 5 is �-far from P.
We study the query complexity of online-erasure-resilient testing of several fundamental

properties. We show that for linearity and quadraticity of functions 5 : {0, 1}3 → {0, 1}, the
query complexity of C-online-erasure-resilient testing for constant C is asymptotically the same

as in the standard model. For linearity, we also prove tight bounds in terms of C, showing that

the query complexity is Θ(log C). A function 5 (G) is linear if it can be represented as a sum

of monomials of the form G[8], where G = (G[1], . . . , G[3]) is a vector of 3 bits; the function is

quadratic if it can be represented as a sum of monomials of the form G[8] or G[8]G[9].
To understand the difficulty of testing in the presence of online erasures, consider the case of

linearity and C = 1. The celebrated tester for linearity in the standard property testing model was

proposed by Blum, Luby, and Rubinfeld [21]. It looks for witnesses of non-linearity that consist

of three points G, H, and G ⊕ H satisfying 5 (G) + 5 (H) ≠ 5 (G ⊕ H), where addition is mod 2, and ⊕
denotes bitwise XOR. Bellare et al. [8] show that if 5 is �-far from linear, then a triple (G, H, G ⊕ H)
is a witness to non-linearity with probability at least � when G, H ∈ {0, 1}3 are chosen uniformly

and independently at random. In our model, after G and H are queried, the oracle can erase the

value of G ⊕ H. To overcome this, our tester considers witnesses with more points, namely, of the

form

∑
G∈) 5 (G) ≠ 5 (

⊕
G∈) G) for sets ) ⊂ {0, 1}3 of even size.

Witnesses of non-quadraticity are even more complicated. The tester of Alon et al. [2] looks

for witnesses consisting of points G, H, I, and all four of their linear combinations. We describe a

two-player game that models the interaction between the tester and the adversary and give a

winning strategy for the tester-player. We also consider witness structures in which all specified

tuples are witnesses of non-quadraticity (to allow for the possibility of the adversary erasing

some points from the structure). We analyze the probability of getting a witness structure

under uniform sampling when the input function is �-far from quadratic. Our investigation

leads to a deeper understanding of the structure of witnesses for both properties, linearity and

quadraticity.

In contrast to linearity and quadraticity, we show that several other properties, specifically,

sortedness and the Lipschitz property of sequences, and the Lipschitz property of functions

5 : {0, 1}3 → {0, 1, 2}, cannot be tested in the presence of an online-erasure oracle, even

with C = 1, no matter how many queries the algorithm makes. Interestingly, witnesses for

these properties have a much simpler structure than witnesses for linearity and quadraticity.

Consider the case of sortedness of integer sequences, represented by functions 5 : [=] → ℕ.

A sequence is sorted (or the corresponding function is monotone) if 5 (G) ≤ 5 (H) for all G < H

in [=]. A witness of non-sortedness consists of two points G < H, such that 5 (G) > 5 (H).
In the standard model, sortedness can be �-tested with an algorithm that queries $(

√
=/�)
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uniform and independent points [32]. (The fastest testers for this property have $( log �=
� ) query

complexity [29, 28, 18, 23, 12], but they make correlated queries that follow a more complicated

distribution.) Our impossibility result demonstrates that even the simplest testing strategy of

querying independent points can be thwarted by an online adversary. To prove this result,

we use sequences that are far from being sorted, but where each point is involved in only one

witness, allowing the oracle to erase the second point of the witness as soon as the first one is

queried. Using a version of Yao’s principle that is suitable for our model, we turn these examples

into a general impossibility result for testing sortedness with a 1-online-erasure oracle.

Our impossibility result for testing sortedness uses sequences with many (specifically, =)

distinct integers. We show that this is not a coincidence by designing a C-online-erasure-resilient

sortedness tester that works for sequences that have $( �2=
C ) distinct values. However, the

number of distinct values does not have to be large to preclude testing the Lipschitz property

in our model. A function 5 : [=] → ℕ, representing an =-integer sequence, is Lipschitz if

| 5 (G) − 5 (H)| ≤ |G − H | for all G, H ∈ [=]. Similarly, a function 5 : {0, 1}3 → ℝ is Lipschitz if

| 5 (G) − 5 (H)| ≤ ‖G − H‖1 for all G, H ∈ {0, 1}3. We show that the Lipschitz property of sequences,

as well as 3-variate functions, cannot be tested even when the range has size 3, even with C = 1,

no matter how many queries the algorithm makes.

Comparison to related models. Our model is closely related to (offline) erasure-resilient

testing of Dixit et al. [27]. In the model of Dixit et al., also investigated in [61, 58, 13, 54, 47, 51],

the adversary performs all erasures to the function before the execution of the algorithm. An

(offline) erasure-resilient tester is given a parameter 
 ∈ (0, 1), an upper bound on the fraction

of the values that are erased. The adversary we consider is more powerful in the sense that it

can perform erasures online, during the execution of the tester. However, in some parameter

regimes, our oracle cannot perform as many erasures. Importantly, all three properties that we

show are impossible to test in our model, are testable in the model of Dixit et al. with essentially

the same query complexity as in the standard model [27]. It is open if there are properties that

have lower query complexity in the online model than in the offline model. The models are not

directly comparable because the erasures are budgeted differently.

Another widely studied model in property testing is that of tolerant testing [56]. As

explained by Dixit et al., every tolerant tester is also (offline) erasure-resilient with corresponding

parameters. As pointed out in [56], the BLR tester is a tolerant tester of linearity for 
 significantly

smaller than �. Tolerant testing of linearity with distributional assumptions was studied in [46]

and tolerant testing of low-degree polynomials over large alphabets was studied in [38].

Tolerant testing of sortedness is closely related to approximating the distance to monotonicity

and estimating the longest increasing subsequence. These tasks can be performed with

polylogorithmic in = number of queries [56, 1, 65]. As we showed, sortedness is impossible to

test in the presence of online erasures.

Adversarial models are also studied in related contexts, such as sampling from a stream [15],

more general stream computations [14], and dynamic algorithms [7]. Notably, in these models,

the input is formed adversarially online while the algorithm is running; there is no notion

of corrupted input. In contrast, in our model, algorithms solve problems on the original,
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ground-truth input while the access to the input is degrading.

1.1 Our results

We design C-online-erasure-resilient testers for linearity and quadraticity, two properties widely

studied because of their connection to probabilistically checkable proofs, hardness of approxi-

mating NP-hard problems, and coding theory. Our testers have 1-sided error, that is, they always

accept functions with the property. They are also nonadaptive, that is, their queries do not depend

on answers to previous queries. This is despite the adversary being allowed to respond online

(i.e., adaptively) to the algorithm’s queries.

Linearity. Starting from the pioneering work of [21], linearity testing has been investigated,

e.g., in [10, 11, 30, 8, 9, 71, 70, 67, 40, 16, 66, 68, 69, 44] (see [59] for a survey). Linearity can be

�-tested in the standard property testing model with $(1/�) queries by the BLR tester. We say

that a pair (G, H) violates linearity if 5 (G) + 5 (H) ≠ 5 (G ⊕ H). The BLR tester repeatedly selects a

uniformly random pair of domain points and rejects if it violates linearity. A tight lower bound

of Θ(�) on the probability that a uniformly random pair violates linearity was proven by Bellare

et al. [8] and Kaufman et al. [44].

We show that linearity can be �-tested with $̃(log C/�) queries with a C-online-erasure oracle.

Theorem 1.1. There exist a constant 20 ∈ (0, 1) and a 1-sided error, nonadaptive, C-online-erasure-
resilient �-tester for linearity of functions 5 : {0, 1}3 → {0, 1} that works for all C ≤ 20 · �5/4 · 23/4 and
makes $

(
min

(
1

� log
C
� ,

C
�

) )
queries.

Our linearity tester has query complexity $(1/�) for constant C, which is optimal even in the

standard property testing model, with no erasures. The tester looks for more general witnesses

of non-linearity than the BLR tester, namely, it looks for tuples ) of elements from {0, 1}3 such
that

∑
G∈) 5 (G) ≠ 5 (

⊕
G∈) G) and |) | is even. We call such tuples violating. The analysis of our

linearity tester crucially depends on the following structural theorem.

Theorem 1.2. Let ) be a tuple of a fixed even size, where each element of ) is sampled uniformly and
independently at random from {0, 1}3. If a function 5 : {0, 1}3 → {0, 1} is �-far from linear, then

Pr

)

[∑
G∈)

5 (G) ≠ 5 (
⊕
G∈)

G)
]
≥ �.

Our theorem generalizes the result of [8], which dealt with the case |) | = 2. We remark that

the assertion in Theorem1.2 does not hold for odd |) |. Consider the function 5 (G) = G[1] + 1

(mod 2), where G[1] is the first bit of G. Function 5 is 1

2
-far from linear, but has no violating

tuples of odd size.

The core procedure of our linearity tester queries Θ(log(C/�)) uniformly random points from

{0, 1}3 to build a reserve and then queries sums of the form

⊕
G∈) G, where ) is a uniformly

random tuple of reserve elements such that |) | is even. The quality of the reserve is the probability
that ) is violating. The likelihood that the procedure catches a violating tuple depends on the
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quality of the reserve (which is a priori unknown to the tester) and the number of sums queried.

Instead of querying the same number of sums in each iteration of the core procedure, we obtain

a better query complexity by guessing different reserve qualities for each iteration and querying

the number of sums that is inversely proportional to the reserve quality. We decide on the

number of sums to query based on the work investment strategy by Berman, Raskhodnikova, and

Yaroslavtsev [17], which builds on an idea proposed by Levin and popularized by Goldreich [35].

Next, we show that our tester has optimal query complexity in terms of the erasure budget C.

Theorem 1.3. For all � ∈ (0, 1

4
], every C-online-erasure-resilient �-tester for linearity of functions

5 : {0, 1}3 → {0, 1} must make more than log
2
C queries.

The main idea in the proof of Theorem1.3 is that when a tester makes blog
2
Cc queries, the

adversary has the budget to erase all linear combinations of the previous queries after every

step. As a result, the tester cannot distinguish a random linear function from a random function.

Quadraticity. Quadraticity and, more generally, low-degree testing have been studied,

e.g., in [6, 5, 34, 30, 33, 64, 62, 2, 3, 50, 49, 45, 66, 68, 42, 19, 39, 63, 25]. Low-degree testing is

closely related to local testing of Reed-Muller codes. The Reed-Muller code C(:, 3) consists of
codewords, each of which corresponds to all evaluations of a polynomial 5 : {0, 1}3 → {0, 1} of
degree at most :. A local tester for a code queries a few locations of a codeword; it accepts if the

codeword is in the code; otherwise, it rejects with probability proportional to the distance of the

codeword from the code.

In the standard property testing model, quadraticity can be �-tested with $(1/�) queries by
the tester of Alon et al. [2] that repeatedly selects G, H, I ∼ {0, 1}3 and queries 5 on all of their

linear combinations—the points themselves, the double sums G ⊕ H, G ⊕ I, H ⊕ I, and the triple

sum G ⊕ H ⊕ I. The tester rejects if the values of the function on all seven queried points sum to

1, since this cannot happen for a quadratic function. A tight lower bound on the probability

that the resulting 7-tuple is a witness of non-quadraticity was proved by Alon et al. [2] and

Bhattacharyya et al. [19].

We prove that quadraticity can be �-tested with$(1/�) queries with a C-online-erasure-oracle

for constant C. Our tester can be easily modified to give a local tester for the Reed-Muller code

C(2, 3) that works with a C-online-erasure oracle.

Theorem 1.4. There exists a 1-sided error, nonadaptive, C-online-erasure-resilient �-tester for quadraticity
of functions 5 : {0, 1}3 → {0, 1} that makes $( 1� ) queries for constant C.

The dependence on C in the query complexity of our quadraticity tester is at least doubly

exponential, and it is an open question whether it can be improved. The main ideas behind our

quadraticity tester are explained in Section 1.2.

Sortedness. Sortedness testing (see [57] for a survey) was introduced by Ergun et al. [29].

Its query complexity has been pinned down to Θ( log(�=)
� ) by [29, 31, 24, 12].

We show that online-erasure-resilient testing of integer sequences is, in general, impossible.
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Theorem 1.5. For all � ∈ (0, 1

12
], there is no 1-online-erasure-resilient �-tester for sortedness of integer

sequences.

In the casewithout erasures, sortedness canbe testedwith$(
√
=/�)uniformand independent

queries [32]. Theorem1.5 implies that a uniform tester for a property does not translate into the

existence of an online-erasure-resilient tester, counter to the intuition that testers that make only

uniform and independent queries should be less prone to adversarial attacks. Our lower bound

construction demonstrates that the structure of violations to a property plays an important role

in determining whether the property is testable.

The hard sequences from the proof of Theorem1.5 have = distinct values. Pallavoor et al.

[53, 55] considered the setting when the tester is given an additional parameter A, the number

of distinct elements in the sequence, and obtained an $( log A

� )-query tester. Two lower bounds

apply to this setting: Ω(log A) for nonadaptive testers [20] and Ω( log A

log log A
) for all testers for the

case when A = =1/3
[12]. Pallavoor et al. also showed that sortedness can be tested with $(

√
A/�)

uniform and independent queries. We extend the result of Pallavoor et al. to the setting with

online erasures for the case when A is small.

Theorem 1.6. Let 20 > 0 be a constant. There exists a 1-sided error, nonadaptive, C-online-erasure-
resilient �-tester for sortedness of =-element sequences with at most A distinct values. The tester makes
$(
√
A
� ) uniform and independent queries and works when A < �2=

20C
.

Thus, sortedness is not testable with online erasures when A is large and is testable in the

setting when A is small. For example, for Boolean sequences, it is testable with $(1/�) queries.

The Lipschitz property. Lipschitz testing, introduced by [41], was subsequently studied

in [23, 26, 17, 4, 22]. Lipschitz testing of functions 5 : [=] → {0, 1, 2} can be performed with

$( 1� ) queries [41]. For functions 5 : {0, 1}3 → ℝ, it can be done with $( 3� ) queries [41, 23].
We show that the Lipschitz property is impossible to test in the online-erasures model even

when the range of the function has only 3 distinct values. This applies to both domains, [=] and
{0, 1}3 .

Theorem 1.7. For all � ∈ (0, 1

8
], there is no 1-online-erasure-resilient �-tester for the Lipschitz property

of functions 5 : [=] → {0, 1, 2}. The same statement holds when the domain is {0, 1}3 instead of [=].

Yao’sminimaxprinciple. All our lower boundsuseYao’sminimaxprinciple. A formulation

of Yao’s principle suitable for our online-erasures model is described in Section 9.

1.2 The ideas behind our quadraticity tester

One challenge in generalizing the tester of Alon et al. [2] to work with an online-erasure oracle is

that its queries are correlated. First, we want to ensure that the tester can obtain function values

on tuples of the form (G, H, I, G ⊕ H, G ⊕ I, H ⊕ I, G ⊕ H ⊕ I). Then we want to ensure that, if the

original function is far from the property, the tester is likely to catch such a tuple that is also a
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witness to not satisfying the property. Next, we formulate a two-player game3 that abstracts the

first task. In the game, the tester-player sees what erasures are made by the oracle-player. This

assumption is made to abstract out the most basic challenge and is not used in the algorithms’

analyses.

Quadraticity testing as a two-player game. Player 1 represents the tester and Player 2

represents the adversary. The players take turns drawing points, connecting points with edges,

and coloring triangles specified by drawn points, each in their own color. Player 1 wins the

game if it draws in blue all the vertices and edges of a triangle and colors the triangle blue. The

vertices represent the points G, H, I ∈ {0, 1}3, the edges are the sums G ⊕ H, G ⊕ I, H ⊕ I, and the

triangle is the sum G ⊕ H ⊕ I. Amove of Player 1 consists of drawing a point or an edge between

two existing non-adjacent points or coloring an uncolored triangle between three existing points

(in blue). A move of Player 2 consists of at most C steps; in each step, it can draw a red edge

between existing points or color a triangle between three existing points (in red).

x2 x3 x4 x5 x6

y1

x2 x3 x4 x5 x6

y1,1

x1

y1

x1

x2 x3 x4 x5 x6

y1,1 y1,2

x2 x3 x4

y1,1 y1,2

y1

x1 x1

y1

Figure 1: Stages in the quadraticity game for C = 1, played according to the winning strategy for

Player 1: connecting the H-decoys from the first tree to G-decoys (frames 1-4); drawing I and

connecting it to H-decoys and an G-decoy (frames 5-6), and creation of a blue triangle (frames

7–8). Frame 5 contains edges from I to two structures, each replicating frame 4. We depict only

points and edges relevant for subsequent frames.

Our online-erasure-resilient quadraticity tester is based on a winning strategy for Player 1

with C$(C) moves. At a high level, Player 1 first draws many decoys for G. The H-decoys are

organized in C + 1 full (C + 1)-ary trees of depth C. The root for tree 8 is H8 , its children are H8 , 9 ,

3This game has been tested on real children, and they spent hours playing it.
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where 9 ∈ [C + 1], etc. We jot the rest of the winning strategy for C = 1 and depict it in Fig. 1.

In this case, Player 1 does the following for each of two trees: it draws points G
(8)
1
, . . . , G

(8)
12
, H8 ;

connects H8 to half of G-decoys (w.l.o.g., G
(8)
1
, . . . , G

(8)
6
); draws point H8 ,1 , connects it to two of the

G-decoys adjacent to H1 (w.l.o.g., G
(8)
1

and G
(8)
2
); draws point H8 ,2 , connects it to two of G

(8)
3
, . . . , G

(8)
6

(w.l.o.g., G
(8)
3

and G
(8)
4
); draws I and connects it to one of the roots (w.l.o.g., H1), connects I to one

of H1,1 and H1,2 (w.l.o.g., H1,1), connects I to one of G
(1)
1

and G
(1)
2

(w.l.o.g., G
(1)
1
), and finally colors

one of the triangles G
(1)
1
H1I and G

(1)
1
H1,1I, thus winning the game. The decoys are arranged to

guarantee that Player 1 always has at least one available move in each step of the strategy.

For general C, the winning strategy is described in full detail in Algorithm 3. Recall that the

H-decoys are organized in C + 1 full (C + 1)-ary trees of depth C. For every root-to-leaf path in

every tree, Player 1 draws edges from all the nodes in that path to a separate set of C + 1 decoys

for G. After I is drawn, the tester “walks” along a root-to-leaf path in one of the trees, drawing

edges between I and the H-decoys on the path. The goal of this walk is to avoid the parts of the

tree spoiled by Player 2. Finally, Player 1 connects I to an G-decoy that is adjacent to all vertices

in the path, and then colors a triangle involving this G-decoy, a H-decoy from the chosen path,

and I. The structure of decoys guarantees that Player 1 always has C + 1 options for its next

move, only C of which can be spoiled by Player 2.

From the game to a tester. There are two important aspects of designing a tester that are

abstracted away in the game: First, the tester does not actually know which values are erased

until it queries them. Second, the tester needs to catch a witness demonstrating a violation of

the property, not merely a tuple of the right form with no erasures. Here, we briefly describe

how we overcome these challenges.

Our quadraticity tester is based directly on the game. It converts the moves of the winning

strategy of Player 1 into a corresponding procedure, making a uniformly random guess at each

step about the choices that remain nonerased. There are three core technical lemmas used in

the analysis of the algorithm. Lemma5.4 lower bounds the probability that the tester makes

correct guesses at each step about which edges (double sums) and triangles (triple sums) remain

nonerased, thus addressing part of the first challenge. This probability depends only on the

erasure budget C. To address the second challenge, Lemma5.3 gives a lower bound on the

probability that uniformly random sampled points (the G- and H- decoys together with I) form

a large violation structure, where all triangles that Player 1 might eventually complete violate

quadraticity. Building on a result of Alon et al., we show that even though the number of

triangles involved in the violation structure is large, namely C$(C), the probability of sampling

such a structure is 
 = Ω(min(�, 2C)), where 2C ∈ (0, 1) depends only on C. Finally, Lemma5.2

shows that despite the online adversarial erasures, the tester has a probability of 
/2 of sampling

the points of such a large violation structure and obtaining their values from the oracle. These

three lemmas combined show that quadraticity can be tested with $(1/�) queries for constant C.
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1.3 Sublinear-time computation in the presence of online corruptions

Our model of online erasures extends naturally to a model of online corruptions, where the

adversary is allowed to modify values of the input function. Specifically, a C-online-corruption
oracle O, after answering each query, can replace values O(G) on up to C domain points G with

arbitrary values in the range of 5 . Our algorithmic results in the presence of online erasures

have implications for computation in the presence of online corruptions.

We consider two types of computational tasks in the presence of online corruptions. The

first one is C-online-corruption-resilient testing, defined analogously to C-online-erasure-resilient

testing. Specifically, we call an algorithm a C-online-corruption-resilient �-tester for property P if,

given parameters C ∈ ℕ and � ∈ (0, 1), and access to an input function 5 via a C-online-erasure

oracle, the algorithm accepts with probability at least 2/3 if 5 ∈ P and rejects with probability at

least 2/3 if 5 is �-far from P. In Lemma1.8 we study a general computational task for which the

algorithm has oracle access to an input function and has to output a correct answer with high

probability. We consider algorithms that access their input via an online-erasure oracle and

show that if with high probability they output a correct answer and encounter no erased queries

during their execution, they also output a correct answer with high probability in the presence

of online corruptions. Note that the correctness of the answer is with respect to the original

function 5 , as opposed to the corrupted values represented by O. Lemma1.8 uses the notion

of an adversarial strategy. We model an adversarial strategy as a distribution on decision trees,

where each tree dictates the erasures to be made for a given input and queries of the algorithm.

Lemma 1.8. Let ) be an algorithm that is given access to a function via a C-online-erasure oracle and
performs a specified computational task. Suppose that for all adversarial strategies, with probability at
least 2/3, the algorithm ) outputs a correct answer and queries no erased values during its execution.
Then, for the same computational task, when ) is given access to a function via a C-online-corruption
oracle, it outputs a correct answer with probability at least 2/3.

This lemma can be applied to our online-erasure-resilient testers for linearity and for

sortedness with few distinct values. These testers have 1-sided error, i.e., they err only when the

function is far from the property. We can amplify the success probability of the testers to 5/6 for

functions that are far from the property, without changing the asymptotic query complexity

of the testers. In addition, the resulting testers have a small probability (specifically, at most

1/6) of encountering an erasure during their computation. As a result, Lemma1.8 implies

online-corruption-resilient testers for these properties. Their performance is summarized in

Corollaries 8.1 and 8.2.

For the second type of computational tasks, we return to the motivation of the algorithm

looking for evidence of fraud. In Lemma1.9, we show that every nonadaptive, 1-sided error,

online-erasure-resilient tester for any property P can be modified so that, given access to an

input function 5 that is far from P via an online-corruption oracle, it outputs a witness of 5 not

being in P. This result applies to our testers for sortedness with few distinct values, linearity,

and quadraticity. Note that the values of the witness could be corrupted values of 5 . For this

task, it is helpful to think of the input 5 as changing dynamically rather than there being a

ground truth input 5 as is the case for Lemma1.8.
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Lemma 1.9. Let P be a property of functions that has a 1-sided error, nonadaptive, C-online-erasure-
resilient tester. Then there exists a nonadaptive algorithm with the same query complexity that, given a
parameter � and access via a C-online-corruption-oracle O to a function 5 that is �-far from P, outputs
with probability at least 2/3 a witness of 5 ∉ P. The witness consists of queried domain points G1 , . . . , G:
and values O(G1), . . . ,O(G:) obtained by the algorithm, such that no , ∈ P has ,(G8) = O(G8) for all
8 ∈ [:].

1.4 Conclusions and open questions

We initiate a study of sublinear-time algorithms in the presence of online adversarial erasures.

We design efficient online-erasure-resilient testers for several important properties (linearity,

quadraticity, and—for the case of small number of distinct values—sortedness). For linearity,

we prove tight upper and lower bounds in terms of C. We also show that several basic properties,

specifically, sortedness of integer sequences and the Lipschitz properties, cannot be tested in

our model. We now list several open problems.

• Sortedness is an example of a property that is impossible to test with online erasures,

but is easy to test with offline erasures, as well as tolerantly. Is there a property that

has smaller query complexity in the online-erasure-resilient model than in the (offline)

erasure-resilient model of [27]?

• We design a C-online-erasure-resilient quadraticity tester that makes $(1/�) queries for
constant C. What is the query complexity of C-online-erasure-resilient quadraticity testing

in terms of C and �? Specifically, the dependence on C in the query complexity of our

quadraticity tester is at least doubly exponential, and it is open whether it can be improved.

• The query complexity of �-testing if a function is a polynomial of degree at most : is

Θ( 1� + 2
:) [2, 19]. Is there a low-degree test for : ≥ 3 that works in the presence of online

erasures?

• Our tester for linearity works in the presence of online corruptions, but our tester for

quadraticity does not. The reason for this is that our linearity tester is unlikely to see

erasures, but that is not the case for our quadraticity tester. Is there an online-corruption-

resilient quadraticity tester?

2 An online-erasure-resilient linearity tester

To prove Theorem1.1, we present and analyze two testers. Our main online-erasure-resilient

linearity tester (Algorithm 1) is presented in this section. Its query complexity has optimal

dependence on C and nearly optimal dependence on �. Its performance is summarized in

Theorem2.1. To complete the proof of Theorem1.1, we give a $(C/�)-query linearity tester in

Section 3. It has optimal query complexity for constant C.
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Theorem 2.1. There exists 20 ∈ (0, 1) and a 1-sided error, nonadaptive, C-online-erasure-resilient �-tester
for linearity of functions 5 : {0, 1}3 → {0, 1} that works for C ≤ 20 · �5/4 · 23/4 and makes $( 1� log

C
� )

queries.

The C-online-erasure-resilient tester guaranteed by Theorem2.1 is presented in Algorithm 1.

Algorithm 1 An Online-Erasure-Resilient Linearity Tester

Input: � ∈ (0, 1

2
), erasure budget C ∈ ℕ, access to function 5 : {0, 1}3 → {0, 1} via a C-online-

erasure oracle.

1: Let @ = 2 log
50C
� .

2: for all 9 ∈ [log
8

� ]:
3: repeat 8 ln 5

2
9�

times:

4: for all 8 ∈ [@]:
5: Sample G8 ∼ {0, 1}3 and query 5 at G8 .

6: repeat 4 · 29 times:

7: Sample a uniform nonempty subset � of [@] of even size.

8: Query 5 at
⊕

8∈� G8 .
9: Reject if

∑
8∈� 5 (G8) ≠ 5 (

⊕
8∈� G8) and all points G8 for 8 ∈ � and

⊕
8∈� G8 are

nonerased.

10: Accept.

2.1 Proof of Theorem1.2

In this section, we prove Theorem1.2, the main structural result used in Theorem2.1. Recall

that a :-tuple (G1 , . . . , G:) ∈ ({0, 1}3): violates linearity if 5 (G1) + · · · + 5 (G:) ≠ 5 (G1 ⊕ · · · ⊕ G:).
(Addition is mod 2 when adding values of Boolean functions.) Theorem1.2 states that if 5 is

�-far from linear, then for all even :, with probability at least �, independently and uniformly

sampled points G1 , . . . , G: ∼ {0, 1}3 form a violating :-tuple. Our proof of Theorem1.2 builds

on the proof of [8, Theorem 1.2], which is a special case of Theorem1.2 for : = 2. The proof

is via Fourier analysis. Next, we state some standard facts and definitions related to Fourier

analysis. See, e.g., [52] for proofs of these facts.

Consider the space of all real-valued functions on {0, 1}3 equipped with the inner-product

〈, , ℎ〉 = E
G∼{0,1}3

[,(G)ℎ(G)],

where , , ℎ : {0, 1}3 → ℝ. The character functions "( : {0, 1}3 → {−1, 1}, defined as "( =
(−1)

∑
8∈( G[8] for ( ⊆ [3], form an orthonormal basis for the space of functions under consideration.

Hence, every function , : {0, 1}3 → ℝ can be uniquely expressed as a linear combination of the

functions "( , where ( ⊆ [3]. The Fourier coefficients of , are the coefficients on the functions

"( in this linear representation of ,.
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Definition 2.2 (Fourier coefficient). For , : {0, 1}3 → ℝ and ( ⊆ [3], the Fourier coefficient of ,
on ( is ,̂(() = 〈, , "(〉 = E

G∼{0,1}3
[,(G)"((G)].

We will need the following facts about Fourier coefficients.

Theorem 2.3 (Parseval’s Theorem). For all functions , : {0, 1}3 → ℝ, it holds that 〈, , ,〉 =∑
(⊆[3] ,̂(()2. In particular, if , : {0, 1}3 → {−1, 1} then ∑

(⊆[3] ,̂(()2 = 1.

Theorem 2.4 (Plancherel’s Theorem). For all functions , , ℎ : {0, 1}3 → ℝ, it holds that 〈, , ℎ〉 =∑
(⊆[3] ,̂(()ℎ̂(().

A function , : {0, 1}3 → {−1, 1} is linear if ,(G),(H) = ,(G ⊕ H) for all G, H ∈ {0, 1}3.

Lemma 2.5. The distance of , : {0, 1}3 → {−1, 1} to linearity is 1

2
− 1

2
max(⊆[3] ,̂(().

Finally, we also use the convolution operation, defined below, and one of its key properties.

Definition 2.6 (Convolution). Let , , ℎ : {0, 1}3 → ℝ. Their convolution is the function , ∗ ℎ :

{0, 1}3 → ℝ defined by (, ∗ ℎ)(G) = E
H∼{0,1}3

[,(H)ℎ(G ⊕ H)].

Theorem 2.7. Let , , ℎ : {0, 1}3 → ℝ. Then, for all ( ⊆ [3], it holds �, ∗ ℎ(() = ,̂(()ℎ̂(().

Proof of Theorem 1.2. Define , : {0, 1}3 → {−1, 1} so that ,(G) = (−1) 5 (G). That is, , is obtained

from the function 5 by encoding its output with ±1. Note that the distance to linearity of , is the

same as the distance to linearity of 5 . We have that the expression
1

2
− 1

2
,(G1) . . . ,(G:),(G1 ⊕ · · · ⊕

G:) is an indicator for the event that points G1 , . . . , G: ∼ {0, 1}3 violate linearity for ,. Define ,∗:

to be the convolution of , with itself : times, i.e., ,∗: = , ∗ · · · ∗ ,, where the ∗ operator appears
: − 1 times. We obtain

Pr

G1 ,...,G:∼{0,1}3
[(G1 , . . . , G:) violates linearity]

= E
G1 ,...,G:∼{0,1}3

[
1

2

− 1

2

,(G1) . . . ,(G:),(G1 ⊕ · · · ⊕ G:)
]

=
1

2

− 1

2

E
G1 ,...,G:−1

∼{0,1}3
[,(G1) . . . ,(G:−1) · E

G:∼{0,1}3
[,(G:),(G1 ⊕ · · · ⊕ G:)]]

=
1

2

− 1

2

E
G1 ,...,G:−1

∼{0,1}3
[,(G1) . . . ,(G:−1)(, ∗ ,)(G1 ⊕ · · · ⊕ G:−1)] (2.1)

=
1

2

− 1

2

E
G1∼{0,1}3

[,(G1) · (,∗:)(G1)] (2.2)

=
1

2

− 1

2

∑
(⊆[3]

,̂((),̂∗:(() (2.3)

=
1

2

− 1

2

∑
(⊆[3]

,̂(():+1 , (2.4)
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where (2.1) holds by the definition of convolution, (2.2) follows by repeated application of the

steps used to obtain (2.1), (2.3) follows from Plancherel’s Theorem (Theorem2.4), and (2.4)

follows from Theorem2.7.

Note that |,̂(()| ≤ 1 for all ( ⊆ [3], because ,̂(() is the inner product of two functions with

range in {−1, 1}. In addition, ,̂(() ≥ 0 for ( such that "( is the closest linear function to ,. Then,
for even :, ∑

(⊆[3]
,̂(():+1 ≤ max

(⊆[3]
(,̂(():−1)

∑
(⊆[3]

,̂(()2 = max

(⊆[3]
(,̂(():−1) ≤ max

(⊆[3]
,̂((),

where the equality follows from Parseval’s Theorem (Theorem2.3). By Lemma2.5, the distance

of , to linearity is
1

2
− 1

2
max(⊆[3] ,̂((), which is at least �, since , is �-far from linear. This

concludes the proof. �

2.2 Proof of Theorem2.1

In this section, we prove Theorem2.1 using Theorem1.2. In Lemma2.8, we analyze the

probability of good events that capture, roughly, that the queries made in the beginning of

each iteration haven’t already been “spoiled” by the previous erasures. Then we use the work

investment strategy of [17], stated in Lemma2.9, together with Theorem1.2 and Lemma2.8 to

prove Theorem2.1.

Each iteration of the outer repeat loop in Steps 3-9 of Algorithm 1 is called a round. We say

a query G is successfully obtained if it is nonerased when queried, i.e., the tester obtains 5 (G) as
opposed to ⊥.

Lemma 2.8 (Good events). Fix one round of Algorithm 1. Consider the points G1 , . . . , G@ queried in
Step 5 of this round, where @ = 2 log(50C/�), and the set ( of all sums

⊕
8∈� G8 , where � is a nonempty

subset of [@] of even size. Let �1 be the (good) event that all points in ( are distinct. Let �2 be the
(good) event that all points G1 , . . . , G@ are successfully obtained and all points in ( are nonerased at the
beginning of the round. Finally, let � = �1 ∩ �2. Then Pr[�] ≤ �

2
for all adversarial strategies.

Proof. First, we analyze event �1. Consider points G81 , . . . , G8: , G8′
1

, . . . , G8′
ℓ
∼ {0, 1}3, where

{81 , . . . , 8:} ≠ {8′
1
, . . . , 8′

ℓ
}, :, ℓ ∈ [@] and :, ℓ are even. Since the points are distributed uniformly

and independently, so are the sums G81 ⊕ · · · ⊕ G8: and G8′
1

⊕ · · · ⊕ G8′
ℓ
. The probability that two

uniformly and independently sampled points G, H ∼ {0, 1}3 are identical is 1

2
3 . The number of

sets � ⊆ [@] of even size is 2
@−1

because every subset of [@ − 1] can be uniquely completed to

such a set �. By a union bound over all pairs of sums, Pr[�1] ≤ 2
2@

4·23 .
To analyze �2 , fix any adversarial strategy. The number of queries made by Algorithm 1 is

at most

log(8/�)∑
9=1

8 ln 5

2
9�

(
@ + 4 · 29

)
≤ 8 ln 5

�
@ + 32 ln 5

�
log

8

�
≤ 8 ln 5

�
@ + 16 ln 5

�
@ ≤ 40@

�
. (2.5)

THEORY OF COMPUTING, Volume 19 (1), 2023, pp. 1–48 14

http://dx.doi.org/10.4086/toc


SUBLINEAR-TIME COMPUTATION IN THE PRESENCE OF ONLINE ERASURES

Hence, the oracle erases at most
40@C

� points. Since each point G8 is sampled uniformly from

{0, 1}3,
Pr

G8∼{0,1}3
[G8 is erased when queried] ≤ 40@C

� · 23
.

Additionally, before the queries G8 are revealed to the oracle, each sum

⊕
8∈� G8 is distributed

uniformly at random. Therefore, for every {81 , . . . , 8:} ⊆ [@],

Pr

G8
1
,...,G8:∼{0,1}3

[G81 ⊕ · · · ⊕ G8: is erased at the beginning of the round] ≤ 40@C

� · 23
.

By a union bound over the @ points sampled in Step 5 and at most 2
@−1

sums, we get

Pr[�2] ≤
40@C

�2
3
(@ + 2

@−1) ≤ 40@C · 2@

� · 23
.

Since @ = 2 log
50C
� , we get

40@C

� ≤ 3

4
· 2@ and, consequently,

Pr[�] ≤ 2
2@

4 · 23
+ 40@C · 2@

� · 23
≤ 2

2@

2
3
≤ 50

4 · C4
�4

2
3
≤

50
4 · 24

0
· �5

�4

≤ �
2

,

since C ≤ 20 · �5/4 · 23/4, as stated in Theorem2.1, and assuming 20 is sufficiently small. �

Next, we state the work investment lemma.

Lemma 2.9 (Lemma 2.5 of [17]). Let - be a random variable taking values in [0, 1]. Suppose E[-] ≥ 
.
Let B = dlog( 4
 )e and � ∈ (0, 1) be the desired probability of error. For all 9 ∈ [B], let ? 9 = Pr[- ≥ 2

−9]
and : 9 = 4 ln(1/�)

2
9


. Then
∏B

9=1
(1 − ? 9): 9 ≤ �.

Proof of Theorem 2.1. By (2.5), the query complexity of Algorithm 1 is $( @� ) = $(
log(C/�)

� ). Algo-

rithm 1 is nonadaptive and always accepts if 5 is linear. Suppose now that 5 is �-far from linear

and fix any adversarial strategy. We show that Algorithm 1 rejects with probability at least 2/3.
Consider the last round of Algorithm 1. For points G1 , . . . , G@ ∼ {0, 1}3 sampled in Step 5

of this last round, let . denote the fraction of nonempty sets {81 , . . . , 8:} ⊆ [@] such that : is

even and (G81 , . . . , G8: ) violates linearity. Recall the event � defined in Lemma2.8. Let 1� be the

indicator random variable for the event � for the last round.

Claim 2.10. Let - = . · 1�, where . is as defined above. Then E[-] ≥ �
2
.

Proof. For all nonempty {81 , . . . , 8:} ⊆ [@], such that : is even, let .81 ,...,8: be the indicator for the

event that (G81 , . . . , G8: ) violates linearity. By Theorem1.2 and the fact that : is even,

E[.81 ,...,8: ] = Pr

G8
1
,...,G8:∼{0,1}3

[(G81 , . . . , G8: ) violates linearity] ≥ �.
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We obtain a lower bound on E[.] by linearity of expectation.

E[.] = 1

2
@−1 − 1

∑
{81 ,...,8:}⊆[@],: even

E[.81 ,...,8: ] ≥ �. (2.6)

Observe that - = . when � occurs, and - = 0 otherwise. By the law of total expectation,

E[-] = E[- |�] · Pr[�] + E[- |�] · Pr[�] = E[- |�] · Pr[�] = E[. |�] · Pr[�]
= E[.] − E[. |�] · Pr[�] ≥ � − 1 · (�/2) = �/2,

where the inequality follows from (2.6), the fact that . ≤ 1, and Lemma2.8. �

Fix any round of Algorithm 1 and the value of 9 used in this round (as defined in Step 2).

Let -′ be defined as -, but for this round instead of the last one. The round is special if -′ ≥ 2
−9
.

Let ?′
9
= Pr[-′ ≥ 2

−9] and ? 9 = Pr[- ≥ 2
−9]. Then ?′

9
≥ ? 9 , since the number of erasures only

increases with each round. For each 9, there are : 9 =
8 ln 5

2
9�

rounds of Algorithm 1 that are run

with this particular value of 9. Since Algorithm 1 uses independent random coins for each

round, the probability that no round is special is at most

log
8

�∏
9=1

(1 − ?′9)
: 9 ≤

log
8

�∏
9=1

(1 − ? 9): 9 ≤
1

5

,

where the last inequality follows by Lemma2.9 applied with � = 1/5 and 
 = �/2 and Claim 2.10.

Therefore, with probability at least
4

5
, Algorithm 1 has a special round.

Consider a special round of Algorithm 1 and fix the value of 9 for this round. We show that

Algorithm 1 rejects in the special round with probability at least 5/6. We call a sum

⊕
8∈� G8

violating if the tuple (G8 : 8 ∈ �) violates linearity. Since � occurred, all @ points queried in Step 5

of Algorithm 1 were successfully obtained. So, the algorithm will reject as soon as it successfully

obtains a violating sum. Since � occurred, there are at least 2
@−1 − 1 distinct sums that can be

queried in Step 8, all of them nonerased at the beginning of the round. Algorithm 1 makes at

most @ + 4 · 29 queries in this round, and thus the fraction of these sums erased during the round

is at most

C · @ + 4 · 29

2
@−1 − 1

≤ C ·
(

1

2
@/2 +

3 · 29
2
@−2

)
≤ C

C · 50

�

+ 12C · 29

C2 · ( 50

� )2

=
8

50 · 8

�

+ 12 · 82 · 29

50
2C · ( 8� )2

≤ 0.16

2
9
+ 0.3072

2
9
≤ 1

2 · 29
,

where in the first inequality we used that
@

2
@−1−1

≤ 1

2
@/2 for @ ≥ 9 and that 2

@−1 − 1 ≥ (4/3) · 2@−2

for @ ≥ 3 (note that @ ≥ 2 log(50C/�) ≥ 2 log 100 > 13), in the second inequality we used

@ ≥ 2 log(50C/�), and in the third inequality we used 2
9 ≤ 8

� and C ≥ 1.
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Since the round is special, at least a 2
−9

fraction of the sums that can be queried in Step 8 are

violating. Thus, the fraction of the sums that are violating and nonerased before each iteration

of Steps 8-9 in this round is at least 2
−9 − 2

−9−1 = 2
−9−1.

Then, each iteration of Steps 8-9 rejects with probability at least 2
−9−1. Since there are 4 · 29

iterations with independently chosen sums, the probability that the special round accepts is at

most

(1 − 2
−9−1)4·29 ≤ e

−2 ≤ 1/6.

That is, the probability that Algorithm 1 rejects in the special round is at least 5/6. Since the
special round exists with probability at least

4

5
, Algorithm 1 rejects with probability at least

4

5
· 5

6
= 2

3
. �

3 An online-erasure-resilient linearity tester with $(C/�) queries
In this section, we present our online-erasure-resilient linearity tester with query complexity

$(C/�) (Algorithm 2) and prove Theorem3.1 below. Theorem3.1 together with Theorem2.1

implies Theorem1.1.

Theorem 3.1. There exist a constant 20 ∈ (0, 1) and a 1-sided error, nonadaptive, C-online-erasure-
resilient �-tester for linearity of functions 5 : {0, 1}3 → {0, 1} that works for C ≤ 20 · � · 23/4 and makes
$( C� ) queries.

Algorithm 2 An Online-Erasure-Resilient Linearity Tester

Input: � ∈ (0, 1

2
), erasure budget C ∈ ℕ, access to function 5 : {0, 1}3 → {0, 1} via a C-online-

erasure oracle.

1: Let 2 = 88 and @ = 2C
� .

2: for all 8 ∈ [@]:
3: Sample G8 ∼ {0, 1}3 and query 5 at G8 .

4: repeat 24

� times:

5: Sample a uniform (8 , 9) such that 8 , 9 ∈ [@] and 8 < 9, then query 5 at G8 ⊕ G 9 .
6: Reject if G8 , G 9 , and G8 ⊕ G 9 are nonerased and 5 (G8) + 5 (G 9) ≠ 5 (G8 ⊕ G 9).
7: Accept.

In the analysis of Algorithm 2, we let G8 , for all 8 ∈ [@], be random variables denoting

the points queried in Step 3. Recall that a pair (G, H) of domain points violates linearity if

5 (G) + 5 (H) ≠ 5 (G ⊕ H). The proof of Theorem3.1 crucially relies on the following lemma about

the concentration of pairs violating linearity.

Lemma 3.2. Suppose 5 is �-far from linear and @ = 2C
� . Let . denote the number of pairs (8 , 9) ∈ [@]2

such that 8 < 9 and (G8 , G 9) violates linearity. Then Pr[. ≤ �
4
·
(@
2

)
] ≤ 0.25.
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We prove Lemma3.2 in Section 3.1. In the rest of this section, we first prove an auxiliary

lemma (Lemma3.3) and then use Lemmas 3.2 and 3.3 to prove Theorem3.1.

We say a query D ∈ {0, 1}3 is successfully obtained if it is nonerased right before it is queried,

i.e., the tester obtains 5 (D) as opposed to the symbol ⊥.

Lemma 3.3. Let �1 be the (good) event that all
(@
2

)
sums G8 ⊕ G 9 of points queried in Step 3 of Algorithm 2

are distinct, and �2 be the (good) event that all @ points G8 queried in Step 3 are successfully obtained.
Then Pr[�1 ∪ �2] ≤ 0.05 for all adversarial strategies.

Proof. First, we analyze event �1. Consider points G8 , G 9 , G: , Gℓ ∼ {0, 1}3, where {8 , 9} ≠ {:, ℓ }.
Since these points are distributed uniformly and independently, so are the sums G8 ⊕ G 9 and
G: ⊕ Gℓ . The probability that two uniformly and independently sampled points G, H ∼ {0, 1}3

are identical is
1

2
3 . Therefore, by a union bound over all pairs of sums, Pr[�1] ≤

(@
2

)
2 · 1

2
3 ≤

@4

4·23 .
To analyze �2 , fix an arbitrary adversarial strategy. In Steps 2-3, the algorithm makes at

most @ queries. Hence the oracle erases at most @C points from {0, 1}3. Since each point G8 is

sampled uniformly from {0, 1}3,

Pr

G8∼{0,1}3
[G8 is erased when queried] ≤ @C

2
3
.

By a union bound over the @ points sampled in Step 3, we get Pr[�2] ≤ @2C

2
3 . We substitute @ = 2C

�
and get

Pr[�1 ∪ �2] ≤
@4

4 · 23
+
@2C

2
3
≤
@4

2
3
=

24C4

�4 · 23
≤ 2424

0
≤ 0.05,

since C ≤ 20 · � · 23/4, as stated in Theorem3.1, and assuming 20 is sufficiently small. �

Proof of Theorem 3.1. The query complexity of Algorithm 2 is evident from its description. Clearly,

Algorithm 2 is nonadaptive and accepts if 5 is linear. Suppose now that 5 is �-far from linear

and fix an arbitrary adversarial strategy. We show that Algorithm 2 rejects with probability at

least
2

3
.

We call a sum G8 ⊕ G 9 queried in Step 5 violating if the pair (G8 , G 9) violates linearity. For

Algorithm 2 to reject, it must sample 8 , 9 ∈ [@] such that G8 , G 9 , and G8 ⊕ G 9 are successfully

obtained and G8 ⊕ G 9 is a violating sum. Let �: , for all : ∈ [24/�], be the event that in iteration :

of Step 4, the algorithm successfully obtains a violating sum. Let � =
⋃
:∈[24/�] �: . We define

the following good event concerning the execution of the for loop: � = �1 ∩ �2 ∩ �3 , where �1

and �2 are as defined in Lemma3.3, and �3 is the event that ., defined in Lemma3.2, is at least

�
4
·
(@
2

)
. By a union bound and Lemmas 3.2 and 3.3, we know that Pr[�] ≥ 0.7. Therefore, the

probability that Algorithm 2 rejects is at least

Pr[� ∩ �] = Pr[�] · Pr[� |�] ≥ 0.7 · Pr[� |�].

Suppose that � occurs for the execution of the for loop. Since �2 occurred, all @ points

queried in Step 3 of Algorithm 2 were successfully obtained. So, the algorithm will reject as
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soon as it successfully obtains a violating sum. Since �1 occurred, there are at least

(@
2

)
distinct

sums that can be queried in Step 5. Since �3 occurred, at least
�
4
·
(@
2

)
of them are violating.

The total number of erasures the adversary makes over the course of the entire execution is at

most 2@C, since Algorithm 2 queries at most 2@ points. Therefore, the fraction of sums that are

nonerased and violating before each iteration of Step 5 is at least

�
4

−
2@C(@

2

) ≥ �
4

− 5C

@
=
�
4

− 5�
2
=
�
4

− 5�
88

>
�
6

.

That is, Pr[�: |�] > �/6 for all : ∈ [24/�]. Observe that the indicator for the event �: , for every

fixed setting of random coins (of the algorithm and the adversary) used prior to iteration : of

Step 5, is a Bernoulli random variable with the probability parameter equal to the fraction of

sums that are violating and nonerased right before iteration :. Since independent random coins

are used in each iteration of Step 5,

Pr[� |�] ≤ Pr

[ ⋂
:∈[24/�]

�: | �
]
< (1 − �/6)24/� ≤ e

−4.

This yields that Pr[� ∩ �] > 0.7 · (1 − e
−4) > 2/3, completing the proof of the theorem. �

3.1 Concentration of pairs that violate linearity

In this section, we prove Lemma3.2 on the concentration of pairs that violate linearity. The

proof relies on Claim 3.4 that gives upper bounds on the fraction of pairs (G, H) ∈ ({0, 1}3)2
that violate linearity and on the fraction of triples (G, H, I) ∈ {0, 1}3×3

such that (G, H) and (G, I)
violate linearity. The upper bounds are stated as a function of the distance to linearity. The

distance of a function 5 to linearity, denoted � 5 , is the minimum over all linear functions , over

the same domain as 5 of PrG[ 5 (G) ≠ ,(G)].
We remark that a tighter upper bound than (3.1) in Claim 3.4 is shown in [8, Lemma 3.2].

Since we only need a looser upper bound, we provide a proof for completeness.

Claim 3.4. For all 5 : {0, 1}3 → {0, 1}, the following hold:

Pr

G,H∼{0,1}3
[(G, H) violates linearity] ≤ 3� 5 ; (3.1)

Pr

G,H,I∼{0,1}3
[(G, H) and (G, I) violate linearity] ≤ � 5 + 4�2

5
. (3.2)

Proof. Let , be the closest linear function to 5 . Let ( ⊆ {0, 1}3 be the set of points on which 5

and , differ, i.e., ( = {G ∈ {0, 1}3 | 5 (G) ≠ ,(G)}. Then |( | = � 5 · 23.
For a pair (G, H) to violate linearity, at least one of G, H, and G ⊕ H must be in (. By a union

bound,

Pr

G,H∼{0,1}3
[(G, H) violates linearity for 5 ] ≤ Pr

G,H∼{0,1}3
[G ∈ ( ∨ H ∈ ( ∨ G ⊕ H ∈ (]

≤ 3 Pr

G∼{0,1}3
[G ∈ (] = 3� 5 ,
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completing the proof of (3.1).

To prove (3.2), let �G,H,I be the event that (G, H) and (G, I) violate linearity. By the law of total

probability,

Pr

G,H,I∼{0,1}3
[�G,H,I]

= Pr[�G,H,I | G ∈ (]Pr[G ∈ (] + Pr[�G,H,I | G ∉ (]Pr[G ∉ (]
≤ 1 · � 5 + Pr[�G,H,I | G ∉ (]
≤ � 5 + Pr[(H, I ∈ () ∨ (G ⊕ H, I ∈ () ∨ (H, G ⊕ I ∈ () ∨ (G ⊕ H, G ⊕ I ∈ () | G ∉ (]
≤ � 5 + 4 Pr[H, I ∈ ( | G ∉ (] = � 5 + 4�2

5
,

where, in the last line, we used symmetry and a union bound, and then independence of G, H,

and I. �

Proof of Lemma 3.2. We prove the lemma by applying Chebyshev’s inequality to .. For all

8 , 9 ∈ [@], where 8 < 9 , let .8 , 9 be the indicator for the event that (G8 , G 9) violates linearity. Then
. =

∑
8< 9∈[@].8 , 9 .

First, we obtain a lower bound on E[.]. By linearity of expectation and symmetry,

E[.] =
∑

8< 9∈[@]
E[.8 , 9] =

(
@

2

)
· Pr

G8 ,G 9∼{0,1}3
[(G8 , G 9) violates linearity] ≥

(
@

2

)
� 5 ,

where the inequality is due to [8, Theorem 1.2].

Next, we obtain an upper bound on Var[.]. We have

Var[.] =
∑
8< 9

Var[.8 , 9] +
∑

8< 9 ,:<;
{8 , 9}≠{:,ℓ }

Cov[.8 , 9.:,;].

By (3.1), we get Var[.8 , 9] ≤ E[.2

8 , 9
] = E[.8 , 9] ≤ 3� 5 . Therefore,∑

8< 9

Var[.8 , 9] ≤ 3

(
@

2

)
� 5 . (3.3)

When {8 , 9} ∩ {:, ℓ } = ∅, the random variables .8 , 9 and .:,ℓ are independent, and thus

Cov[.8 , 9.:,;] = 0. Consider the case when |{8 , 9} ∩ {:, ℓ }| = 1. Suppose that 8 = :. Then

Cov[.8 , 9.8 ,ℓ ] = E[.8 , 9.8 ,ℓ ] − E[.8 , 9]E[.8 ,ℓ ] ≤ � 5 + 4�2

5
− �2

5
= � 5 + 3�2

5
,

where the inequality follows from (3.2) and [8, Theorem 1.2]. By symmetry,∑
8< 9 ,:<;
{8 , 9}≠{:,ℓ }

Cov[.8 , 9.:,;] = 6

∑
8< 9<ℓ

Cov[.8 , 9.8 ,;] ≤ 6

(
@

3

)
(� 5 + 3�2

5
) ≤ 15

(
@

3

)
� 5 , (3.4)
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where the last inequality holds since � 5 ≤ 1

2
. Combining (3.3) with (3.4), we get that Var[.] ≤

18

(@
3

)
� 5 .

Finally, we use � 5 ≥ �, our lower bound on E[.], and Chebyshev’s inequality:

Pr

[
. ≤

(
@

2

)
�
4

]
≤ Pr

[
. ≤

(
@

2

)
� 5
4

]
≤ Pr

[
. ≤ E[.]

4

]
≤ Pr

[����. − E[.]���� ≥ 3

4

· E[.]
]
≤ 16

9

· Var[.]
E[.]2 ≤

16 · 18

9

·
(@
3

)
� 5(@

2

)
2

�2

5

=
16 · 18

9

· 2
3

· @ − 2

@(@ − 1)� 5
<

22

@ · � 5
=

22�
2C� 5

≤ 22

2C
≤ 1

4

,

since @ = 2C
� and 2 = 88. This completes the proof of Lemma3.2. �

4 A lower bound for online-erasure-resilient linearity testing

In this section, we prove Theorem1.3 that shows that every C-online-erasure-resilient �-tester for
linearity of functions 5 : {0, 1}3 → {0, 1} must make more than log

2
C queries.

Proof of Theorem 1.3. The proof is via Yao’s minimax principle for the online-erasures model

(stated in Theorem9.1 and Corollary 9.4). Let D+ be the uniform distribution over all linear

Boolean functions on {0, 1}3 and D− be the uniform distribution over all Boolean functions

functions on {0, 1}3.
We show that a function 5 ∼ D− is 1

4
-far from linear with probability at least 6/7. Let ,

be a linear function, 5 ∼ D−, and dist( 5 , ,) be the fraction of domain points on which 5 and

, differ. Then, E[dist( 5 , ,)] = 1

2
. By the Hoeffding bound, Pr 5∼D−[dist( 5 , ,) ≤ 1

4
] ≤ e

− 2
3

8 . By a

union bound over the 2
3
linear functions, Pr 5∼D−[ 5 is 1

4
-far from linear] ≥ 1 − 2

3 · e− 2
3

8 . For 3

large enough, this probability is at least 6/7.
We fix the following strategy for a C-online-erasure oracle O: after responding to each query,

erase C sums of the form

⊕
G∈) G, where ) is a subset of the queries made so far, choosing the

subsets ) in some fixed order. If at most log
2
C queries are made, the adversary erases all the

sums of queried points.

Let � be a deterministic algorithm that makes @ ≤ log
2
C queries to the oracle O. Assume

w.l.o.g. that � does not repeat queries. We describe two random processes P+ and P− that
interact with algorithm � in lieu of oracle O and provide query answers consistent with a

random function fromD+ andD−, respectively. For each query of �, both processes P+ and
P− return ⊥ if the value has been previously erased by O; otherwise, they return 0 or 1 with

equal probability. Thus, the distribution over query-answer histories when � interacts with P+
is the same as when � interacts with P−.

Next, we describe how the processes P+ and P− assign values to the locations of 5 that

were either not queried by � or erased when queried, and show that they generateD+ andD−,
respectively. After � finishes its queries, P− sets the remaining unassigned locations (including
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the erased locations) of the function to be 0 or 1 with equal probability. Clearly, P− generates a
function from the distributionD−.

To describe P+ fully, first let & ⊆ {0, 1}3 denote the queries of � that are answered with a

value other than ⊥. Since @ ≤ log
2
C, by our choice of the oracle O, the sum of any subset of

vectors in & is not contained in &. Hence, the vectors in & are linearly independent. Then, P+
completes & to a basis � for {0, 1}3 and sets the value of 5 on all vectors in � \& independently

to 0 or 1 with equal probability.

Since � is a basis, each vector H ∈ {0, 1}3 can be expressed as a linear combination of vectors

in � (with coefficients in {0, 1}), that is, H =
⊕

G∈) G for some ) ⊆ �. The process P+ sets

5 (H) = ∑
G∈) 5 (G), where addition is mod 2. The function 5 is linear and agrees with all values

previously assigned by P+ to the vectors in &. Moreover, 5 is distributed according toD+, since
one can obtain a uniformly random linear function by first specifying a basis for {0, 1}3, and
then setting the value of 5 to be 0 or 1 with equal probability for each basis vector.

Thus, P+ generates linear functions, P− generates functions that are 1

4
-far from linear with

probability at least
6

7
, and the query-answer histories for any deterministic algorithm � that

makes at most log
2
C queries and runs against our C-online-erasure oracle O are identical under

P+ and P−. Consequently, Corollary 9.4 implies the desired lower bound. �

5 An online-erasure-resilient quadraticity tester

In this section, we state our online-erasure-resilient quadraticity tester (Algorithm 3) and prove

Theorem1.4.

The main idea behind Algorithm 3 and its representation as a two-player game appear in

Section 1.2, accompanied by explanatory figures for the case when C = 1. We now give a high

level overview of Algorithm 3. For a function 5 : {0, 1}3 → {0, 1} and G, H, I ∈ {0, 1}3 , let

)5 (G, H, I) =
∑

∅≠(⊆{G,H,I}
5
(⊕
D∈(

D
)
,

where the first sum is mod 2. We say a triple (G, H, I) violates quadraticity if )5 (G, H, I) = 1.

The tester of Alon et al. samples three vectors G, H, I ∈ {0, 1}3 uniformly and independently

at random and rejects if (G, H, I) violates quadraticity. Our tester looks for the same kind of

violations as the tester of Alon et al.

The main challenge in the design of our online-erasure-resilient tester is to ensure it can

query all three such points and their sums in the presence of a C-online-erasure adversary. In

each iteration of the repeat loop of Algorithm 3, the following steps are performed. For each

ℓ ∈ [C + 1], we first query a reserve of uniformly and independently sampled points G
(ℓ )
8

for

8 ∈ [(C + 1)2(2C + 1)C]. Next, for each ℓ ∈ [C + 1], we query a set of points that we visualize as

being the nodes of a (C + 1)-ary tree of depth C. There is a one-to-one correspondence between

the nodes of such a tree and vectors of length up to C + 1 over the alphabet [C + 1]. For < ∈ [C],
we represent by H(ℓ , 91 ,..., 9<), the sampled point visualized as a node at depth < in the ℓ -th tree,

where the 98 ’s specify the unique path from the root to that node in the tree. Now, for ℓ ∈ [C + 1],
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and for each node Hj in the ℓ -th tree, where j is shorthand for (ℓ , 91 , . . . , 9<), we associate with

that node a subset (j of points from the reserve, and query the points Hj ⊕ G for each G in (j .

The set (j is a subset of a specified cardinality of the set (j(−1) , where (j(−1) is the set associated

with the parent node of Hj in the ℓ -th tree. Finally, the algorithm queries a point I sampled

uniformly and independently at random from {0, 1}3, and samples a uniformly random leaf Hj
of a uniformly random tree ℓ ∈ [C + 1]. The set (j associated with the leaf Hj has, by construction,

C + 1 points in it. All the points in (j , again, by construction, also belong to the sets (j′ associated

with the nodes Hj′ on the path from the root to the leaf Hj of the ℓ -th tree. Our algorithm queries

Hj′ ⊕ I for all such nodes Hj′ . It then samples G uniformly at random from (j and queries G ⊕ I.
Finally, it samples a uniformly random node Hj′ on the path from the root to the leaf Hj and

queries G ⊕ Hj′ ⊕ I. Observe that, by design, the point G ⊕ Hj′ has already been queried in an

earlier step. The algorithm rejects if all the points involved in the sum )5 (G, Hj′ , I) are nonerased
and the triple (G, Hj′ , I) violates quadraticity.

Algorithm 3 uses the following notation. For a vector j = (ℓ , 91 , . . . , 9<), where < ∈ [0, C]
and ℓ , 91 , . . . , 9C ∈ [C + 1], we use the convention that j = (ℓ ) for < = 0. For : ∈ [0, <], let
j(:) = (ℓ , 91 , . . . , 9:) be the vector containing the first : + 1 entries of j. Finally, let j(−1)

be the

vector j with its last entry removed. If j = (ℓ ), then j(−1)
is the empty vector ∅.

Algorithm 3 A C-Online-Erasure-Resilient Quadraticity Tester

Input: � ∈ (0, 1), access to function 5 : {0, 1}3 → {0, 1} via a C-online-erasure oracle.
1: Let � = (C + 1)2(2C + 1)C , � = (C+1)(C+1)−1

C , and 
 = min

( �
2
, 7

(18·��(C+1))��(C+1)

)
.

2: repeat 42C/
 times: ⊲ 2C is a constant from Lemma 5.4 that depends only on C.
3: for all ℓ ∈ [C + 1]:
4: Query 5 at independent G

(ℓ )
1
, . . . , G

(ℓ )
�
∼ {0, 1}3, and let (∅ = {G(ℓ )

1
, . . . , G

(ℓ )
�
}.

5: for all integer < ∈ [0, C]:
6: for all (91 , 92 , . . . , 9<) ∈ [C + 1]< : ⊲ When < = 0, the loop is run once.
7: Let j = (ℓ , 91 , . . . , 9<) and query 5 at Hj ∼ {0, 1}3. ⊲ j = (ℓ ) for < = 0.
8: Let (j be a uniformly random subset of (j(−1) of size (C + 1)(2C + 1)C−< .
9: Query G ⊕ Hj for all G ∈ (j .
10: Remove (j from (j(−1) .

11: Sample I ∼ {0, 1}3 and query 5 at I.

12: Sample j = (ℓ , 91 , . . . , 9C) ∼ [C + 1](C+1)
and query 5 at Hj(<) ⊕ I for all < ∈ [0, C].

13: Suppose (j = {G(ℓ )
1
, G
(ℓ )
2
, . . . , G

(ℓ )
C+1
}. Sample 8 ∼ [C + 1] and query 5 at G

(ℓ )
8
⊕ I.

14: Sample integer < ∼ [0, C] and query 5 at G
(ℓ )
8
⊕ Hj(<) ⊕ I.

15: Reject if )5 (G(ℓ )8 , Hj(<) , I) = 1. ⊲ All points needed for computing )5 are nonerased.
16: Accept.

Proof of Theorem 1.4. If 5 is quadratic, then Algorithm 3 always accepts. Suppose that 5 is

�-far from quadratic. Fix an adversarial strategy and a round of Algorithm 3. We show that

Algorithm 3 rejects with probability Ω(�) in this round.
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Observe that Algorithm 3 makes queries of three types: singletons (of the form G
(ℓ )
8
, Hj(<) , and

I), doubles (of the form G
(ℓ )
8
⊕ Hj(<) ,G

(ℓ )
8
⊕ I, and Hj(<) ⊕ I), and triples (of the form G

(ℓ )
8
⊕ Hj(<) ⊕ I),

where 8 ∈ [�], j = (ℓ , 91 , . . . , 9C) ∈ [C + 1](C+1) , < ∈ [0, C]. We call points of the form G
(ℓ )
8
⊕ Hj(<) ,

G
(ℓ )
8
⊕ I, and Hj(<) ⊕ I double decoys, and points of the form G

(ℓ )
8
⊕ Hj(<) ⊕ I triple decoys. We refer to

double and triple decoys simply as decoys. Only some of the decoys become actual queries.

Let G denote the good event that, for the fixed round, all of the following hold:

• all singleton queries are successfully obtained;

• all double decoys of the form G
(ℓ )
8
⊕ Hj(<) are nonerased right before Hj(<) is queried;

• all double and triple decoys involving I (as well as G
(ℓ )
8

and/or Hj(<)) are nonerased right

before I is queried.

To lower bound the rejection probability of the algorithm, we consider the event that all

triples of the form (G(ℓ )
8
, Hj(<) , I), where 8 ∈ [�], j = (ℓ , 91 , . . . , 9C) ∈ [C + 1](C+1) , < ∈ [0, C], violate

quadraticity, and all queries in the round are successfully obtained.

Definition 5.1 (Witness). The singleton queries form a witness if )5 (G(ℓ )8 , Hj(<) , I) = 1 for all

8 ∈ [�], j = (ℓ , 91 , . . . , 9C) ∈ [C + 1](C+1) , < ∈ [0, C], and, in addition, all singletons and all decoys

are distinct.

Let, be the event that the singleton queries form a witness. Let 
 be as defined in Step 1.

Lemma 5.2 (Probability of successful singleton queries). If 5 : {0, 1}3 → {0, 1} is �-far from being
quadratic, then Pr[, ∩ G] ≥ 
/2.

In other words, Lemma5.2 shows that for every adversarial strategy, with probability at least



2
, the tester successfully obtains singleton queries that form a witness and, in addition, right

before each singleton is queried, the decoys involving that singleton are nonerased. The proof

of Lemma5.2 (in Section 5.1) relies on the following key structural result about the fraction of

large structures where all triples of a certain form violate quadraticity.

Lemma 5.3 (Probability of singletons forming a violation structure). Let � , � , C ∈ ℕ. Suppose
5 : {0, 1}3 → {0, 1} is �-far from being quadratic. For points G(ℓ )

8
, H
(ℓ )
9
, I ∼ {0, 1}3, where (8 , 9 , ℓ ) ∈

[�] × [�] × [C + 1],

Pr

[ ⋂
8∈[�], 9∈[�],ℓ∈[C+1]

[)5 (G(ℓ )8 , H
(ℓ )
9
, I) = 1]

]
≥ 
, (5.1)

where 
 = min

( �
2
, 7

(18·��(C+1))��(C+1)

)
.

We prove Lemma5.3 in Section 5.2, building on a result of [2]. To prove Lemma5.2, we use

Lemma5.3 with � = (C + 1)2(2C + 1)C and � = ∑C
<=0
(C + 1)< = (C+1)(C+1)−1

C , which is the number of

nodes in each tree.
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Next, in Lemma5.4, we show that the probability of successfully obtaining all double and

triple queries in the round, given the event, ∩ G, depends only on C. The proof of Lemma5.4

appears in Section 5.3.

Lemma 5.4 (Probability of all double and triple queries being nonerased). The probability that all
queries made in one round of Algorithm 3 are successfully obtained, conditioned on the event, ∩ G, is
at least 1/2C , where 2C depends only on C.

Let � denote the event that all queries in the round are successfully obtained, and recall

that, is the event that the singleton queries form a witness. The probability that Algorithm 3

rejects in the given round is at least Pr[, ∩ �]. Note that

Pr[, ∩ �] ≥ Pr[, ∩ � ∩ G] = Pr[� |, ∩ G]Pr[, ∩ G].

By Lemma5.2 and Lemma5.4, we have that Algorithm 3 rejects with probability at least
1

2C
· 


2

for a fixed round. Thus, after
42C

 rounds, Algorithm 3 rejects with probability at least

2

3
. �

5.1 Proof of Lemma5.2

In this section, we prove Lemma5.2 that bounds from below the probability that the singleton

queries are successfully obtained and form awitness, and, in addition, right before each singleton

is queried, the decoys involving that singleton are nonerased. We show that if the fraction of

large violation structures is at least 
 (Lemma5.3), then, despite the adversarial erasures, the

probability of successful singleton queries, as described above, is at least 
/2.

Proof of Lemma 5.2. The key idea of the proof is to keep track of active witnesses during the

execution of the round. To simplify notation, let  = (� + �)(C + 1) + 1 and denote by D1 , . . . , D 
the singleton queries made by Algorithm 3 in the given round.

Definition 5.5 (Active witness). For 8 ∈ [ ], let D1 , . . . , D8 denote the singleton queries made

by Algorithm 3 up until a given timepoint of the fixed round. We say a witness (E1 , . . . , E ) ∈
({0, 1}3) is 8-active if

1. The first 8 entries of the tuple are equal to D1 , D2 , . . . , D8 .

2. All decoys involving D9 , where 9 ≤ 8, were nonerased right before D9 was queried.

Furthermore, let �8 be a random variable denoting the number of active witnesses right after

the 8-th singleton query, and let �8 denote the number of active witnesses right before the 8-th

singleton query. Let�1 denote the number ofwitnesses at the beginning of the round, such that all

singletons and decoys for the witness are nonerased. Note that Pr[, ∩G] = Pr[� = 1] = E[� ].
To lower bound E[� ], we first show a lower bound on �1, obtained in turn by a lower bound

on the total fraction of witnesses. We then bound the difference between �8 and �8+1 and show

a relationship between E[�8] and E[�8] for general 8. All expectations in this proof are over the

choice of singletons D1 , . . . , D ∼ {0, 1}3.
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Claim 5.6. Let 
 be as defined in Lemma 5.3. If 5 is �-far from being quadratic then

Pr

D1 ,...,D ∼{0,1}3
[(D1 , . . . , D ) is a witness] ≥

7

8

.

Proof. The probability that the event of Lemma5.3 is true for the singleton queries D1 , . . . , D is at

least 
. Let ( denote the set of all singletons and decoys associated with the  -tuple (D1 , . . . , D ).
The number of triple decoys associated with the  -tuple is at most ��(C + 1), whereas the number

of double decoys associated with the  -tuple is at most �(� + 1)(C + 1). Therefore, |( | ≤ 3��(C + 1).
Any two elements in ( are uniformly and independently distributed. Thus, the probability

that two elements in ( are identical is
1

2
3 . By a union bound over all pairs of elements in (, the

probability that not all elements in ( are distinct is at most
|( |2
2
3 . For 3 large enough, we have

|( |2
2
3 ≤ 


8
. Hence, with probability at least 
 − 


8
= 7


8
, the singleton queries D1 , . . . , D form a

witness. �

Claim 5.7. For all adversarial strategies, �1 ≥ 3

4
· 2 3.

Proof. Recall that �1 counts the number of witnesses at the beginning of the round, such that all

singletons and decoys for the witness are nonerased. Algorithm 3 makes at most |( | queries in
each round, so it makes at most

42C |( |

 queries in total. Therefore, the oracle can erase at most

4C·|( |·2C

 points from {0, 1}3. Each erasure can deactivate at most |( | · 2( −1)3

witnesses, since the

point erased could be any one of the |( | singletons and decoys associated with the witness. By

Claim 5.6, we obtain �1 ≥ 7

8
· 2 3 − 4C·|( |2·2C


 · 2( −1)3
. Since |( | ≤ 3��(C + 1), for 3 large enough,

we have
4C·|( |2·2C


 · 2( −1)3 ≤ 

8
· 2 3. Therefore, �1 ≥ 3


4
· 2 3. �

Claim 5.8. For all 8 ∈ [ − 1] and all adversarial strategies,

�8 − �8+1 ≤ (C + 1)2(2C + 1)C · |( | · 2( −1−8)3 .

Proof. Observe that Algorithm 3 makes at most (C + 1)(2C + 1)C decoy queries between any two

singleton queries (this is the number of double queries made in Step 9 for < = 0). Therefore,

in the period right after the 8-th singleton query and before the (8 + 1)-st singleton query, the

oracle can perform at most ((C + 1)(2C + 1)C + 1) · C ≤ (C + 1)2(2C + 1)C erasures. Let D1 , D2 , . . . , D8
be the first 8 singleton queries of the algorithm. For each erasure, the oracle can deactivate

at most |( | · 2( −1−8)3
witnesses whose first 8 entries are D1 , D2 , . . . , D8 , by erasing one of the

remaining singletons or decoys. Therefore, the number of active witnesses between right after

the 8-th singleton query and right before the (8 + 1)-st singleton query can decrease by at most

(C + 1)2(2C + 1)C · |( | · 2( −1−8)3
. �

Claim 5.9. For all 8 ∈ [ ], it holds that E[�8] = 1

2
3E[�8].
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Proof. For E ∈ {0, 1}3, let �8 ,E denote the number of witnesses that are active right before the

8-th singleton query and whose 8-th entry is equal to E. Then, �8 =
∑
E∈{0,1}3 �8 ,E . Let 1(E) be the

indicator random variable for the event that the 8-th singleton query is equal to E. Then,

E[�8] = E
[ ∑
E∈{0,1}3

�8 ,E1(E)
]
= E[1(E)]E

[ ∑
E∈{0,1}3

�8 ,E

]
=

1

2
3
E[�8] . �

We combine the claims above to complete the proof of the lemma. By Claim 5.9,

E[� ] =
1

2
3
E[� ] =

1

2
3
E[� −1 + � − � −1] =

1

2
3
E[� −1] −

1

2
3
E[� −1 − � ]

=
1

2
23
E[� −1] −

1

2
3
E[� −1 − � ] = · · · =

1

2
 3

E[�1] −
 −1∑
8=1

E[�8 − �8+1]
2
( −8)3 .

By Claim 5.7,

1

2
 3

E[�1] ≥
3

4

.

In addition, Claim 5.8 yields that

 −1∑
8=1

E[�8 − �8+1]
2
( −8)3 ≤

 −1∑
8=1

(C + 1)2(2C + 1)C · |( | · 2( −1−8)3

2
( −8)3

≤  · (C + 1)2(2C + 1)C · |( |
2
3

≤ 

4

,

where the last inequality holds for large enough 3. We obtain that

Pr[, ∩ G] = E[� ] ≥
3

4

− 

4

=


2

. �

5.2 Proof of Lemma5.3

In this section, we prove Lemma5.3 on the fraction of large violation structures for which all

triples (G(ℓ )
8
, H
(ℓ )
9
, I), where (8 , 9 , ℓ ) ∈ [�] × [�] × [C + 1], violate quadraticity. Our proof builds on a

result of [2].

Proof of Lemma 5.3. Let � denote the fraction of violating triples for 5 , i.e.,

� := Pr

G,H,I∼{0,1}3
[)5 (G, H, I) = 1].

The distance of 5 to quadraticity, denoted by � 5 , is the minimum of PrG[ 5 (G) ≠ ,(G)] over all
quadratic functions , over the same domain as 5 . Using this notation, we state a result from [2]

for the special case of quadraticity.

Claim 5.10 (Theorem 1 of [2]). For all 5 , we have � ≥ min(7
3
� 5 ,

1

40
).
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Let �′ denote the left-hand side of (5.1), that is, the probability that for G
(ℓ )
8
, H
(ℓ )
9
, I ∼ {0, 1}3,

all triples (G(ℓ )
8
, H
(ℓ )
9
, I) are violating, where (8 , 9 , ℓ ) ∈ [�] × [�] × [C + 1]. Claim 5.11 lower bounds

�′ in terms of � for all values of � 5 . Claim 5.13 lower bounds �′ for small values of � 5 . We

combine these results and use Claim 5.10 to conclude the proof of the lemma.

Claim 5.11. For all 5 and points G(ℓ )
8
, H
(ℓ )
9
, I ∼ {0, 1}3, where 8 ∈ [�], 9 ∈ [�], ℓ ∈ [C + 1], it holds that

Pr

[ ⋂
8∈[�], 9∈[�],ℓ∈[C+1]

[)5 (G(ℓ )8 , H
(ℓ )
9
, I) = 1]

]
≥ ���(C+1).

Proof. The proof uses the Hölder’s inequality as its key ingredient.

Claim 5.12 (Hölder’s inequality). Let ?, @ ≥ 1 such that 1

? + 1

@ = 1. For all vectors (01 , . . . , 0=),
(11 , . . . , 1=) ∈ ℝ= , ∑

8∈[=]
|0818 | ≤

( ∑
8∈[=]
|08 |?

)
1/? ( ∑

8∈[=]
|18 |@

)
1/@
.

For G
(ℓ )
8
, H
(ℓ )
9
, I ∼ {0, 1}3, let )(ℓ )

8 9
be the event )5 (G(ℓ )8 , H

(ℓ )
9
, I) = 1. Then

Pr

[ ⋂
8∈[�], 9∈[�],ℓ∈[C+1]

)
(ℓ )
8 9

]
=

∑
D∈{0,1}3

Pr

[ ⋂
8∈[�], 9∈[�],ℓ∈[C+1]

)
(ℓ )
8 9
| I = D

]
Pr[I = D]

=
1

2
3

∑
D∈{0,1}3

Pr

[ ⋂
8∈[�], 9∈[�],ℓ∈[C+1]

)
(ℓ )
8 9
| I = D

]
=

1

2
3

∑
D∈{0,1}3

Pr

[ ⋂
8∈[�], 9∈[�]

)
(1)
8 9
| I = D

] C+1

≥
(

1

2
3

∑
D∈{0,1}3

Pr

[ ⋂
8∈[�], 9∈[�]

)
(1)
8 9
| I = D

] ) C+1

= Pr

[ ⋂
8∈[�], 9∈[�]

)
(1)
8 9

] C+1

,

where the first equality holds by the law of total probability; the third equality holds because,

conditioned on I taking a specific value, the events

⋂
8∈[�], 9∈[�] )

(ℓ )
8 9

for ℓ ∈ [C + 1] are independent
and have the same probability; the inequality follows from the Hölder’s inequality.

We use a similar argument to obtain

Pr

[ ⋂
8∈[�], 9∈[�]

)
(1)
8 9

]
≥

(
Pr

[ ⋂
9∈[�]

)
(1)
19

] ) �
,
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where we condition on the values of H
(1)
1
, . . . , H

(1)
�
, and I. Similarly, by conditioning on the values

of G
(1)
1

and I, we obtain

Pr

[ ⋂
9∈[�]

)
(1)
19

]
≥ (Pr[)(1)

11
])� .

Since Pr[)(1)
11
] = �, the claim follows. �

Next, we consider the case when � 5 is small. For D1 , D2 , D3 ∈ {0, 1}3, let span(D1 , D2 , D3) be
the set of points

⊕
8∈) D8 for ∅ ≠ ) ⊆ [3] and

( =
⋃

8∈[�], 9∈[�],ℓ∈[C+1]
span(G(ℓ )

8
, H
(ℓ )
9
, I).

The set ( has (� + �)(C + 1) + 1 singletons, at most �(� + 1)(C + 1) double sums, and at most ��(C + 1)
triple sums. Therefore, |( | ≤ 3��(C + 1).

Claim 5.13. Suppose � 5 ≤ 1

2|( | . Then �
′ ≥ � 5

2
.

Proof. Let , be a closest quadratic function to 5 . Any two elements of ( are uniformly and

independently distributed in {0, 1}3. Then, for G(ℓ )
8
, H
(ℓ )
9
, I ∼ {0, 1}3, we have

�′ ≥ Pr[ 5 (I) ≠ ,(I) and 5 (D) = ,(D) ∀ D ∈ ( \ {I}]
≥ Pr[ 5 (I) ≠ ,(I)] −

∑
D∈(\{I}

[ 5 (I) ≠ ,(I) and 5 (D) ≠ ,(D)]

≥ � 5 − (|( | − 1)�2

5
= � 5 (1 − (|( | − 1)� 5 ).

If � 5 ≤ 1

2|( | , then 1 − (|( | − 1)� 5 ≥ 1 − |( | · 1

2|( | ≥
1

2
, which concludes the proof. �

Suppose
1

2|( | ≤ � 5 ≤ 3

7·40
. In this case, by Claim 5.10 and Claim 5.11 and using the fact that

|( | ≤ 3��(C + 1), we have

�′ ≥
(
7

3

� 5
) ��(C+1)

≥
(

7

6 · |( |
) ��(C+1)

≥ 7

(18 · ��(C + 1))��(C+1) .

Finally, if � 5 ≥ 1

40
, then again by Claim 5.10 and Claim 5.11, we have �′ ≥ 1

40
(��(C+1)) . We have

obtained that �′ ≥ min

( �
2
, 7

(18·��(C+1))��(C+1)

)
. �

5.3 Proof of Lemma5.4

In this section, we prove Lemma5.4, which shows that conditioned on the good event, ∩ G,
all queries in one round of Algorithm 3 are successfully obtained. In particular, this probability

only depends on the per-query erasure budget C.
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Proof of Lemma 5.4. We first prove a lower bound on the probability that the queries made in

Step 9 are successfully obtained.

Claim 5.14. Conditioned on the event, ∩ G, the probability that in one execution of Step 9 at level
< ∈ [0, C], all queries in the step are successfully obtained is at least(

1

(C2 + C)(2C + 1)C−< + 1

) (C+1)(2C+1)C−<
.

Proof. Fix the values of ℓ , <, 91 , . . . , 9< for the given execution of Step 9 and let j = (ℓ , 91 , . . . , 9<).
We can assume, without loss of generality, that Step 6 considers the tuples (91 , . . . , 9<) in the

lexicographic order. When 9< = 1, then right before Step 9 is executed, we have |(j(−1) | =
(C + 1)(2C + 1)C−<+1

. The size of the set (j(−1) decreases as the value of 9< increases, so that for

9< = C + 1, we have

|(j(−1) | = (C + 1)(2C + 1)C−<+1 − C(C + 1)(2C + 1)C−<

= (C + 1)(2C + 1)C−<(2C + 1 − C) = (C + 1)2(2C + 1)C−< .

Thus, right before Step 9 is executed, the size of (j(−1) is at least (C + 1) times the size of the subset

(j .

Let B denote the size of (j(−1) right before the execution of Step 8. In Step 8 we sample a

uniformly random subset (j of (j(−1) of size B′ = (C + 1)(2C + 1)C−< and in Step 9 we query G ⊕ Hj
for all G ∈ (j . Conditioned on the event, ∩ G, all sums G ⊕ Hj , where G ∈ (j , are distinct and
nonerased right before Hj is queried. On the 8-th query of Step 9, the tester selects a uniformly

random G out of B − (8 − 1) elements. Right before the 8-th query of the tester, the oracle can

have erased at most C8 of the sums G ⊕ Hj , for G ∈ (j(−1) , since the adversary is not aware of the

points belonging to (j until their sums with Hj are queried in Step 9. Therefore, the probability

that the tester successfully obtains the sum on its 8-th query is at least 1 − C8
B−8+1

, where 8 ∈ [B′].
We argued that, for all values of 9< , right before the execution of Step 9, it always holds that

B ≥ (C + 1)B′. Therefore, the probability that the tester successfully obtains a sum is always

positive. In particular, using the bound B ≥ (C + 1)B′, the probability that all queries in Step 9 are

successfully obtained is at least

B′∏
8=1

(
1 − C8

B − 8 + 1

)
≥

(
1 − CB′

B − B′ + 1

) B′
≥

(
1

(C + 1)B′ − B′ + 1

) B′
=

(
1

B′C + 1

) B′
.

Substituting B′ = (C + 1)(2C + 1)C−< concludes the proof. �

In Steps 4-11, the tester makes only singleton and double queries. Conditioned on, ∩ G,
all singleton queries are successfully obtained. All double queries are made in Step 9. By

Claim 5.14, the probability that all double queries in Step 9 are successfully obtained depends

only on C.

Before I is queried in Step 11, conditioned on the event, ∩ G, all double and triple sums

of the form Hj(<) ⊕ I, G ⊕ I, and G ⊕ Hj(<) ⊕ I, where < ∈ [0, C], j = (ℓ , 91 . . . , 9C) ∈ [C + 1](C+1)
,
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and G ∈ (j , are distinct and nonerased. After I is queried, the oracle can perform at most C

erasures. Therefore, there exists ℓ ∈ [C + 1], say ℓ = 1, such that all double and triple sums

Hj(<) ⊕ I, G ⊕ I, and G ⊕ Hj(<) ⊕ I, where < ∈ [0, C], j = (1, 91 . . . , 9C) ∈ [C + 1](C+1)
, and G ∈ (j , are

nonerased after I is queried. With probability
1

C+1
, the tester samples ℓ = 1 in Step 12. By a

similar reasoning, with probability
1

(C+1)C the tester samples values of 91 , . . . , 9C in Step 12, say

91 = · · · = 9C = 1, such that all queries Hj(<) ⊕ I, where < ∈ [0, C], are successfully obtained. In

addition, right before Hj(C) ⊕ I is queried, all sums of the form G ⊕ I and G ⊕ Hj(<) ⊕ I, where

j = (1, . . . , 1, 9C) ∈ [C + 1](C+1)
, < ∈ [0, C], and G ∈ (j , are nonerased.

After Hj(C) ⊕ I is queried, the oracle performs at most C erasures, so there exists G ∈ (j such
that G ⊕ I and G ⊕ Hj(<) ⊕ I, where j = (1, 1, . . . , 1) and< ∈ [0, C], are nonerased. With probability

1

C+1
, the tester samples this G in Step 13, and with probability

1

C+1
, it samples < ∈ [0, C] such that

the triple sum G ⊕ Hj(<) ⊕ I is successfully obtained in Step 14. Thus, with probability
1

(C+1)C+3
, all

queries in Steps 12-14 are successfully obtained. Therefore the probability that all queries in one

round of Algorithm 3 are successfully obtained, conditioned on, ∩ G, is 1/2C , where 2C is a

constant depending only on C. �

6 Online-erasure-resilient sortedness testing

In this section, we prove Theorem1.5 on the impossibility of general online-erasure-resilient

sortedness testing and Theorem1.6 on online-erasure-resilient sortedness testing of sequences

with few distinct values.

6.1 Impossibility of online-erasure-resilient sortedness testing

In this section, we prove Theorem1.5 which shows that online-erasure-resilient testing of

sortedness of integer sequences is impossible.

Proof of Theorem 1.5. By Yao’s principle (see Corollary 9.4), it is enough to give a pair of distribu-

tions, one over monotone functions over [=] and the other one over functions over [=] that are
far from monotone, and an adversarial strategy, such that there is no deterministic algorithm

that can distinguish the distributions with high probability, when given access to them via a

1-online-erasure oracle that uses the given strategy.

Let = ∈ ℕ be even. Consider the following distributions on functions 5 : [=] → [=].

D+ distribution: Independently for all 8 ∈ [=/2]:

• 5 (28 − 1) ← 28 − 1 and 5 (28) ← 28 − 1, with probability 1/3.

• 5 (28 − 1) ← 28 − 1 and 5 (28) ← 28, with probability 1/3.

• 5 (28 − 1) ← 28 and 5 (28) ← 28, with probability 1/3.

D− distribution: Independently for all 8 ∈ [=/2]:
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• 5 (28 − 1) ← 28 and 5 (28) ← 28 − 1, with probability 1/3.

• 5 (28 − 1) ← 28 − 1 and 5 (28) ← 28, with probability 2/3.

Every function sampled from the distributionD+ is monotone.

For a function sampled from the distribution D−, the expected number of index pairs

(28 − 1, 28) such that the respective function values are 28 and 28 − 1 is equal to =/6. By a

Chernoff bound, the probability that the number of such index-pairs is less than =/12 is at most

exp(−=/48). In other words, with probability at least 1 − exp(−=/48), a function sampled from

theD− distribution is 1/12-far from being monotone.

Consider a deterministic adaptive algorithm ) with two-sided error for online-erasure-

resilient
1

12
-testing of monotonicity of functions from [=] to [=]. Assume that ) is given access

to a function sampled fromD+ orD− with equal probability, where the access is via a 1-online-

erasures oracle. The oracle uses the following strategy. For each 8 ∈ [=/2], if ) queries the point

28 − 1, then the oracle erases the function value at the point 28; if ) queries the point 28 then the

oracle erases the function value at the point 28 − 1. The oracle erases exactly one function value

between queries. Given this strategy, the tester ) never sees a violation to monotonicity.

The distribution of function values restricted to any particular index is identical for distribu-

tionsD+ andD−. Hence, the tester ) cannot distinguish the distributions, no matter how many

queries it makes. �

6.2 Online-erasure-resilient testing of sortedness with small A

In this section, we prove Theorem1.6 by showing that $(
√
A
� ) uniform queries are sufficient for

C-online-erasure-resilient �-testing of sortedness, when A, the number of distinct values in the

sequence, is small. Pallavoor et al. [53] gave a 1-sided error �-tester for sortedness of real-valued

sequences containing at most A distinct values that makes $(
√
A
� ) uniform and independent

queries. The proof of [53, Theorem 1.5] is the starting point for our analysis.

Proof of Theorem 1.6. We call (D, E) ∈ [=]2 a violating pair if D < E and 5 (D) > 5 (E). The tester,

given input � ∈ (0, 1) and oracle access to a function 5 with image size at most A, queries 5 on
22
√
A

� points selected uniformly and independently and rejects if and only if it queries D, E ∈ [=]
such that (D, E) is a violating pair. Since the decision made by the tester does not depend on the

specific values being queried, but only on the ordering of the queried values, we can assume

without loss of generality that the input function is of the form 5 : [=] → [A]. Clearly, the tester
accepts all sorted functions. We show that for 2 = 32, if 5 is �-far from sorted, the tester rejects

with probability at least
2

3
.

Suppose 5 is �-far from sorted. Define the violation graph �([=], �) to be the graph whose

edges are the violating pairs (D, E) ∈ [=]2. Dodis et al. [28, Lemma 7] show that � has a matching

" of size at least �=/2. For each range value 8 ∈ [A], let "8 be the set of edges (D, E) ∈ " whose

lower endpoint D has value 8, i.e., 5 (D) = 8. Let !8 consist of the |"8 |/2 smallest indices amongst

the lower endpoints of the edges in "8 . Let *8 consist of the |"8 |/2 largest indices amongst
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the upper endpoints of the edges in "8 . It is not hard to see that, for every 8 ∈ [A], all pairs in
!8 ×*8 are violating. By construction,∑

8∈[A]
|!8 | =

∑
8∈[A]
|*8 | =

∑
8∈[A]
|"8 |/2 =

|" |
2

≥ �=
4

. (6.1)

We show that with probability at least
2

3
, for some 8 ∈ [A], the tester samples a nonerased element

both from !8 and from*8 , in which case it rejects.

Our proof relies on the following claim from [36], for which we first introduce some notation.

Let !1 , . . . , !A be disjoint subsets of [=]. Let ?8 =
|!8 |
= and � =

∑
8∈[A] ?8 . Suppose we sample

2
√
A/� uniform points from [=]. Let � be a random variable denoting the set of indices 8 ∈ [A]

such that the sample contains at least one element from the set !8 .

Claim 6.1 (Claim 1 of [36]). With probability 1 − e
−2 over the choice of the sample,∑

8∈�
?8 ≥

�
√
A
.

Split the sample into two parts of size
2
√
A

� each. Let !′
8
⊆ !8 be the set of nonerased indices

of !8 after the tester queries the first part of the sample, and define *′
8
similarly. Let ?′

8
=
|!′
8
|

= ,

@′
8
=
|*′

8
|

= , and �′ =
∑
8∈[A]min(?′

8
, @′

8
). Without loss of generality assume ?′

8
≤ @′

8
for all 8 ∈ [A]. The

adversary performs at most
2
√
AC
� erasures after the first part of the sample is queried, therefore

�′ =
∑
8∈[A]

|!′
8
|

=
≥

( ∑
8∈[A]

|!8 |
=

)
− 2
√
AC

�=
≥ �

4

− 2
√
AC

�=
≥ �

8

,

where we use (6.1) and the assumption that

√
A ≤ A ≤ �2=

822C
. Let �′ be a random variable denoting

the set of indices 8 ∈ [A] such that at least one element of !′
8
is contained in the first part of the

sample. By Claim 6.1, with probability 1 − e
− 2

8 over the first part of the sample,∑
8∈�′

?′8 ≥
�

8

√
A
. (6.2)

The probability that the second part of the sample does not include a nonerased element from

∪8∈[A]*′8 is (
1 −

∑
8∈[A]

@′8 +
2
√
AC

�=

) 2
√
A

� ≤
(
1 − �

8

√
A
+ �

16

√
A

) 2
√
A

� ≤ e
− 2

16 ,

where we use (6.2) to lower bound

∑
8∈[A] @

′
8
, and the assumption that A < �2=

2C to upper bound

the number of erasures. Therefore, the probability that for some 8 ∈ [A] the tester samples a

nonerased element both from !8 and*8 and rejects is at least

(1 − e
− 2

8 ) · (1 − e
− 2

16 ) ≥ 2

3

,

where the inequality holds for 2 = 32. �
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7 Impossibility of online-erasure-resilient Lipschitz testing

In this section, we prove Theorem1.7. We start by showing that 1-online-erasure-resilient

Lipschitz testing of functions 5 : [=] → {0, 1, 2} is impossible.

Proof of Theorem 1.7, part 1. We prove the theorem using Yao’s principle. The proof is analogous

to that of Theorem1.5 once the hard distributions are described. In particular, the strategy of

the oracle is identical to that used in the proof of Theorem1.5.

Let = ∈ ℕ be amultiple of 4. The following distributions are over functions 5 : [=] → {0, 1, 2}.

DistributionD+: Independently, for all 8 ∈ [=] such that 8 mod 4 ≡ 1:

• 5 (8) ← 0 and 5 (8 + 1) ← 1, with probability 1/2.

• 5 (8) ← 1 and 5 (8 + 1) ← 2, with probability 1/2.

Independently, for all 8 ∈ [=] such that 8 mod 4 ≡ 3:

• 5 (8) ← 1 and 5 (8 + 1) ← 0, with probability 1/2.

• 5 (8) ← 2 and 5 (8 + 1) ← 1, with probability 1/2.

DistributionD−: Independently, for all 8 such that 8 mod 4 ≡ 1:

• 5 (8) ← 0 and 5 (8 + 1) ← 2, with probability 1/2.

• 5 (8) ← 1 and 5 (8 + 1) ← 1, with probability 1/2.

Independently, for all 8 such that 8 mod 4 ≡ 3:

• 5 (8) ← 2 and 5 (8 + 1) ← 0, with probability 1/2.

• 5 (8) ← 1 and 5 (8 + 1) ← 1, with probability 1/2.

Every function sampled from the distributionD+ is Lipschitz. For a function sampled from

the distribution D−, the expected distance to being Lipschitz is 1/4. The rest of the proof is

similar to that of Theorem1.5. �

Next, we prove the second part of Theorem1.7 showing that 1-online-erasure-resilient

Lipschitz testing of functions 5 : {0, 1}3 → {0, 1, 2} is impossible.

Proof of Theorem 1.7, part 2. The proof is analogous to the proof of the first part of the theorem

once the hard distributions are described.

The following distributions are over functions 5 : {0, 1}3 → {0, 1, 2}. Let 41 ∈ {0, 1}3 denote
the first standard basis vector.
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DistributionD+: Independently, for all G ∈ {0, 1}3 such that G1 = 0:

• 5 (G) ← 0 and 5 (G ⊕ 41) ← 1, with probability 1/2.

• 5 (G) ← 1 and 5 (G ⊕ 41) ← 2, with probability 1/2.

DistributionD−: Independently, for all G ∈ {0, 1}3 such that G1 = 0:

• 5 (G) ← 0 and 5 (G ⊕ 41) ← 2, with probability 1/2.

• 5 (G) ← 1 and 5 (G ⊕ 41) ← 1, with probability 1/2.

Every function sampled from the distributionD+ is Lipschitz. For a function sampled from the

distributionD−, the expected distance to being Lipschitz is 1/4. The rest of the proof is similar

to that of Theorem1.5. This completes the proof of Theorem1.7. �

8 Computation in the presence of online corruptions

This section discusses implications of our results to computation in the presence of online

corruptions.

8.1 Online-corruption-resilience from online-erasure-resilience in testing

In this section, we prove Lemma1.8, showing that an algorithm that accesses its input via an

online-erasure oracle and, with high probability, encounters no erasures and outputs a correct

answer, is also correct with high probability for all adversarial strategies (and for the same

computational task) when it accesses its input via an online-corruption oracle.

Proof of Lemma 1.8. Fix an input function 5 and a strategy of the C-online-corruption oracle for

this function. Let O(2) denote an oracle that uses this strategy. Map the strategy of O(2) to a

strategy for a C-online-erasure oracle O(4), so that whenever O(2) modifies the value at a point

G to O(2)(G) ≠ 5 (G), the online-erasure oracle erases the value at the same point, i.e., it sets

O(4)(G) =⊥.
Fix the random coins of an execution of ), where access to 5 is via O(4), and for which all

queries are successfully obtained and ) outputs a correct answer. Let )(4) be the execution of )

with those coins. Similarly, let )(2) be the execution of ) with the same coins, when access to 5

is via O(2). Since )(4) encounters no erasures, )(2) will make the same queries as )(4) and get

the same query answers. Consequently, )(2) will also output the same (correct) answer as )(4).
Therefore, when ) accesses 5 via an online-corruption oracle, it outputs a correct answer with

probability at least 2/3. �
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8.2 Online-corruption-resilient linearity tester

In this section, we show the existence of a 2-sided error, online-corruption-resilient tester for

linearity.

Corollary 8.1. There exists 20 ∈ (0, 1) and a nonadaptive, C-online-corruption-resilient �-tester for
linearity of functions 5 : {0, 1}3 → {0, 1} that works for C ≤ 20 · �5/4 · 23/4 and makes $( 1� log

C
� )

queries.

Proof. Consider Algorithm 1, modified to use @ = 2 log
�C
�2

for � = 3000. Note that the larger the

size @ of the reserve, the higher is the probability that Algorithm 1 detects a violation to linearity.

For the choice of @ = 2 log
3000C
�2

, Algorithm 1 is also a 1-sided error online-erasure-resilient tester.

Furthermore, for this choice of @, Algorithm 1 rejects with probability at least 5/6 (as opposed

to 2/3) when 5 is �-far from linear.

By Lemma1.8, it remains to show that, for all adversarial strategies, Algorithm 1 queries an

erased point during its execution with probability at most 1/6. Fix an adversarial strategy and

one round of Algorithm 1. (Recall that each iteration of the outer repeat loop in Steps 3-9 is

called a round). Let � be the event defined in Lemma2.8 for the fixed round. Then Pr[�] ≤ �
800

.

Let � denote the event that the algorithm queries an erased point during the fixed round.

Then

Pr[�] = Pr[� | �]Pr[�] + Pr[� | �]Pr[�] ≤ Pr[� | �] + Pr[�].
To upper bound Pr[� | �] it suffices to upper bound the probability that the algorithm queries

an erased sum in some iteration of Step 8 of the fixed round. Since � occurred, there are at least

2
@−1 − 1 distinct sums that can be queried in Step 8, all of them nonerased at the beginning of the

round. Algorithm 1 makes at most @ + 4 · 29 ≤ @ + 32

� queries in this round. Thus, the fraction of

these sums erased during the round is at most

C ·
@ + 32

�

2
@−1 − 1

≤ C ·
(

1

2
@/2 +

70

� · 2@
)
≤ �2

�
+ 70�3

4C · �2

≤ �2

(
1

�
+ 8.75

�2

)
≤ �2

88 · 32

,

where in the first inequality we used that
@

2
@−1−1

≤ 1

2
@/2 for @ ≥ 9 and that (2@−1−1)/32 ≥ 2

@/70 for

@ ≥ 5 (note that @ ≥ 2 log(3000C/�2) ≥ 25), in the second inequality we used @ ≥ 2 log(3000C/�2),
and in the third inequality we used � ≤ 1

2
.

Since there are at most 4 · 29 ≤ 32

� iterations of Step 8, we obtain by a union bound that

Pr[� | �] ≤ 32

�
· �2

88 · 32

=
�
88

.

Consequently, Pr[�] ≤ �
88
+ �

800
≤ �

80
. The number of rounds of Algorithm 1 is at most

log 8/�∑
9=1

8 ln 5

2
9�

=
8 ln 5

�

log
8

�∑
9=1

1

2
9
≤ 8 ln 5

�
.

Therefore, Algorithm 1 queries an erased point during its execution with probability at most

8 ln 5

� · Pr[�] ≤ 1

6
. This concludes the proof. �
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8.3 Online-corruption-resilient tester of sortedness with few distinct values

In this section, we show the existence of nonadaptive online-corruption-resilient tester for

sortedness of sequences with few distinct values.

Corollary 8.2. There exists a nonadaptive, C-online-corruption-resilient �-tester for sortedness of =-
element sequences with at most A distinct values. The tester makes $(

√
A
� ) uniform and independent

queries and works when A < �2=
20C

, where 20 > 0 is a specific constant.

Proof. Recall that the online-erasure-resilient sortedness tester makes
22
√
A

� uniform and indepen-

dent queries to 5 : [=] → [A]. The tester always accepts when 5 is sorted. We can easily modify

the tester, without affecting its asymptotic query complexity, to reject with probability at least

5/6 (as opposed to 2/3) when 5 is �-far from sorted. Then, by Lemma1.8, it suffices to show

that, for all adversarial strategies, this tester queries an erased point with probability at most

1/6. The adversary performs at most
22
√
AC

� erasures during the execution of the algorithm. Since

the tester performs its queries uniformly at random, the probability that a given query is erased

is at most
22
√
AC

�= . By a union bound, the probability that some query of the tester is erased is at

most
422AC
�2=

. Set 20 = 2422
. By our assumption that A < �2=

2422C
, we obtain that the probability that

the tester samples an erased point is at most
1

6
. �

8.4 Finding witnesses in the presence of online corruptions

In this section, we prove Lemma1.9. Specifically, we show how to modify a nonadaptive, 1-sided

error, online-erasure-resilient tester for a property P to get an algorithm that accesses the input

via an online-corruption oracle and outputs a witness demonstrating the violation of P.

Proof of Lemma 1.9. Let ) be a nonadaptive, 1-sided error, C-online-erasure-resilient tester for

P. Let 5 be �-far from P. Fix a strategy of the C-online-corruption oracle, and let O(2) denote
the oracle running this strategy. Define a a C-online-erasure oracle O(4) that follows the same

strategy as O(4), except that O(4) erases the value at each point G that O(2) modifies, i.e., it sets

O(4)(G) =⊥.
If the tester ) accesses 5 via O(4), it rejects with probability at least 2/3. Fix the random coins

of an execution of ) for which it rejects. Let )(4) be the execution of ) with those coins (where

access to 5 is via O(4)). Similarly, let )(2) be the execution of ) with the same coins when access

to 5 is via O(2). Since ) is nonadaptive, )(2) and )(4) make the same queries. By definition of O(4),
if )(4) obtains $(4)(G) = 5 (G) for a query G, then )(2) obtains $(2)(G) = 5 (G) for the same query.

Since )(4) is a 1-sided error tester, it can reject only if it successfully obtains values of 5 on

some queried points G1 , . . . , G: such that no , ∈ P has ,(G8) = 5 (G8) for all 8 ∈ [:]. Then, for the
same queries, )(2) obtains O(2)(G1) = 5 (G1), . . . ,O(2)(G:) = 5 (G:). Therefore, )(2) finds a witness

of 5 ∉ P. We modify ) to output a witness if it finds one. (Note that )(2) and )(4) might output

different sets of points violating P, since )(2) will obtain additional values O(2)(G) ∈ ℝ for the

queries G for which )(4) obtained O(4)(G) =⊥.) Now, if we run the modified ) with access to 5

via O(2), it outputs a witness of 5 ∉ P with probability at least 2/3. �
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9 Yao’s minimax principle for online erasure oracles

We extend Yao’s minimax principle [72] to the setting of online erasures, so that it can be used

to prove lower bounds on the query complexity of randomized online-erasure-resilient testers.

In the standard property testing model, Yao’s principle allows one to prove a lower bound on

query complexity by describing a distribution on inputs that is hard to test, in the sense that a

deterministic algorithm needs many queries to decide, with high probability over the input,

whether an input sampled from the distribution has the property or is far from it. In the setting

of online erasures, we show that one can prove a lower bound by describing a distribution on

inputs as well as an oracle erasure strategy such that every deterministic algorithm that accesses

the input selected from the distribution via the erasure oracle needs many queries to test a

specified property with high probability.

Theorem 9.1. To prove a lower bound @ on the worst-case query complexity of online-erasure-resilient
randomized algorithms that perform a specified computational task with error probability strictly less
than 1

3
, it is enough to give a distributionD on inputs of size = and a (randomized) oracle erasure strategy

S, such that every deterministic algorithm making at most @ queries to an input drawn fromD via an
online-erasure oracle that uses strategy S, errs with probability at least 1

3
.

Proof. We prove a min-max inequality similar to Yao’s original min-max inequality [72]. The

inequality relates the error complexities of the algorithms, rather than their query complexity,

which we will fix beforehand. Consider a randomized algorithm for the specified task that,

given access to an input object of size = via a C-online-erasure oracle, makes at most @ queries,

and may be incorrect with some probability. We can represent the randomized algorithm as a

probability distribution � on the set of all (possibly incorrect) deterministic algorithms � with

query complexity at most @. LetA@ denote the set of such algorithms, and let �(�) denote the
probability of drawing algorithm � from the setA@ .

Denote by -= the set of inputs of size = for the computational task. Let S@,= be the set

of deterministic erasure strategies of the C-online-erasure oracle for inputs of size = against

algorithms of query complexity at most @. An adversarial strategy can be represented by a

decision tree that, based on the input and the queries of the algorithm, indicates which input

entries to erase next. Since we are only considering inputs of fixed size and algorithms of

bounded query complexity, the set of oracle strategies has finite cardinality. Oracle strategies can

be randomized, so we consider a distribution on deterministic strategies. For ease of notation,

we consider a joint distribution on inputs and oracle strategies, i.e., we let � be a distribution

on the input-strategy pairs -= × S@,= . Given an input G ∈ -= , an adversarial strategy B ∈ S@,= ,
and an algorithm � ∈ A@ , let �(�, G, B) be the indicator function for � being incorrect on G,

i.e., �(�, G, B) = 1 if � is incorrect on G against an oracle that uses strategy B, and �(�, G, B) = 0

otherwise.

We prove the following min-max inequality

min

�
max

(G,B)∈-=×S@,=

∑
�∈A@

�(�, G, B)�(�) ≥ max

�
min

�∈A@

∑
(G,B)∈-=×S@,=

�(�, G, B)�(G, B). (9.1)
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We comment on how (9.1) implies Theorem9.1. Suppose there exists some distribution �
on input-strategy pairs, such that every @-query deterministic algorithm errs with probability

at least 1/3 on an input-strategy pair drawn from �. This implies that the right-hand side

of (9.1) is at least
1

3
. (Note that we can express � as a distribution D on the inputs and a

randomized adversarial strategy S). By (9.1), every @-query randomized algorithm errs with

probability at least
1

3
for every input and adversarial strategy. Therefore, an algorithm for the

given computational task that errs with probability strictly less than
1

3
has to make at least @

queries, which implies Theorem9.1.

We now prove (9.1). Fix distribution � on algorithms and distribution � on input-strategy

pairs. Then

max

(G,B)∈-=×S@,=

∑
�∈A@

�(�, G, B)�(�) =
( ∑
(G,B)∈-=×S@,=

�(G, B)
)

max

(G,B)∈-=×S@,=

∑
�∈A@

�(�, G, B)�(�)

≥
∑

(G,B)∈-=×S@,=

�(G, B)
∑
�∈A@

�(�, G, B)�(�)

=
∑
�∈A@

�(�)
∑

(G,B)∈-=×S@,=

�(�, G, B)�(G, B) (9.2)

≥
∑
�∈A@

�(�) min

�∈A@

∑
(G,B)∈-=×S@,=

�(�, G, B)�(G, B)

= min

�∈A@

∑
(G,B)∈-=×S@,=

�(�, G, B)�(G, B).

Crucially, the fact thatA@ , -= , and S@,= have finite cardinalities allows us to exchange the order

of the sums in (9.2). �

9.1 A version of Yao’s minimax with two distributions

In this section, we prove a corollary to Theorem9.1 which refers to the more common usage of

Yao’s minimax principle for proving lower bounds, where separate distributions on positive

and negative instances are defined. The corollary is a generalization of Claim 5 in [60].

Definition 9.2. The statistical distance between two discrete distributionsD1 andD2 is

��(D1 ,D2) = max

(⊆support(D1)∪support(D2)

(��� Pr

G∼D1

[G ∈ (] − Pr

G∼D2

[G ∈ (]
���) .

Definition 9.3. Given a @-query deterministic algorithmA, let 0(G) be the string of @ answers

thatA receives when making queries to input object G. For a distribution D and adversarial

strategy S, letD-view be the distribution on strings 0(G)where the input object G is sampled

fromD and accessed via a C-online-erasure oracle using strategy S.

Corollary 9.4. To prove a lower bound @ on the worst-case query complexity of online-erasure-resilient
randomized algorithms for a promise decision problem, it is enough to give
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• a randomized adversarial strategy S,

• a distributionD+ on positive instances of size =, and

• a distributionD− on instances of size = that are negative with probability at least 6

7
,

such that ��(D+-view,D−-view) < 1

6
for every deterministic @-query algorithm that accesses its input

via an online-erasure oracle using strategy S.

Our proof of Corollary 9.4 is similar to an argument in [60]. We rely on the following claim

from [60].

Claim 9.5 (Claim 4 of [60]). Let � be an event that happens with probability at least 1 − � under
the distribution D and let ℬ be the distribution D conditioned on �. Then ��(D ,ℬ) ≤ �′, where
�′ = 1

1−� − 1.

Proof of Corollary 9.4. Let � be a deterministic @-query algorithm for the promise decision

problem. Given distributionsD+ andD−, we define a distributionD satisfying the conditions

of Theorem9.1. Let � be the event that G ∼ D− is a negative instance, and letℬ be the distribution

D− conditioned on the event �. To obtain a sample fromD, with probability 1/2 draw a sample

fromD+, and with probability 1/2 draw a sample from ℬ. We show that � errs with probability

at least 1/3 when it accesses an input object G ∼ D via the online-erasure oracle that uses

strategy S. Let & be the set of query-answers strings 0 on which � accepts. By the law of total

probability,

Pr

G∼D
[�(G) is correct] = 1

2

Pr

G∼D+
[�(G) accepts] + 1

2

Pr

G∼ℬ
[�(G) rejects]

=
1

2

+ 1

2

(
Pr

G∼D+
[�(G) accepts] − Pr

G∼ℬ
[�(G) accepts]

)
=

1

2

+ 1

2

(
Pr

0∼D+-view
[0 ∈ &] − Pr

0∼ℬ-view
[0 ∈ &]

)
≤ 1

2

+ 1

2

��(D+-view,ℬ-view).

Note that ℬ-view is the same as the distributionD−-view conditioned on the event �. By

Claim 9.5 and the assumption that PrG∼D−[�] ≥ 6

7
, we have ��(ℬ-view,D−-view) ≤ 1

6
. By the

triangle inequality,

��(D+-view,ℬ-view) ≤ ��(D+-view,D−-view) + ��(ℬ-view,D−-view, ) < 1

6

+ 1

6

=
1

3

.

Therefore, PrG∼D[�(G) is correct] < 1

2
+ 1

2
· 1

3
= 2

3
. �
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