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Abstract. For any set (, any relation 5 ⊆ {0, 1}= × (, and any partial Boolean

function , defined on a subset of {0, 1}< , we show that

ℝ1/3( 5 ◦ ,=) ∈ Ω
(
ℝ4/9( 5 ) ·

√
ℝ1/3(,)

)
,

where ℝ&(·) stands for the bounded-error randomized query complexity with error at

most &, and 5 ◦ ,= ⊆ ({0, 1}<)= × ( denotes the composition of 5 with = instances of

,. This result is new even in the special case when ( = {0, 1} and , is a total function.

We show that the new composition theorem is optimal for the general case of

relations: A relation 50 and a partial Boolean function ,0 are constructed, such that

ℝ4/9( 50) ∈ Θ(
√
=), ℝ1/3(,0) ∈ Θ(=) and ℝ1/3( 50 ◦ ,=

0
) ∈ Θ(=).
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The theorem is proved via introducing a new complexity measure, max-conflict
complexity, denoted by "̄(·). Its investigation shows that "̄(,) ∈ Ω(

√
ℝ

1/3(,)) for any
partial Boolean function , and ℝ

1/3( 5 ◦ ,=) ∈ Ω(ℝ4/9( 5 ) · "̄(,)) for any relation 5 ,

which readily implies the composition statement. It is further shown that "̄(,) is
always at least as large as the sabotage complexity of , (introduced by Ben-David and

Kothari in 2016).

1 Introduction

Let ( be a finite set, |( | ≥ 2. An (-relation in = Boolean variables is defined to be a subset

5 ⊆ {0, 1}= × ( such that for every G ∈ {0, 1}= there exists a B ∈ ( such that (G, B) ∈ 5 . (For

motivation see Section 2.) If ( = {0, 1}, we call the (-relation a Boolean relation. A partial Boolean
function in < variables is a function , : ) → {0, 1}, where ) ⊆ {0, 1}< . We will identify ,
with the Boolean relation {(G, ,(G)) | G ∈ )} ∪ {(G, 1) | G ∉ ), 1 ∈ {0, 1}} ⊆ {0, 1}< × {0, 1}.
, is called a total Boolean function if ) = {0, 1}< . The composition of an (-relation 5 and a

partial Boolean function , is the (-relation 5 ◦ ,= ⊆ ({0, 1}<)= × ( defined as follows. A tuple

(G1 , . . . , G= , B) is in 5 ◦ ,= if and only if one of the following two conditions holds:

1. There exists an 8 such that G8 is not a valid input of ,, i. e., G8 ∉ ).

2. Each G8 is a valid input of , and ((,(G1), . . . , ,(G=)), B) ∈ 5 .

Note that if 5 is a partial Boolean function in = Boolean variables with domain ' ⊆ {0, 1}= (i. e.,

5 : '→ {0, 1}), then 5 ◦ ,= is a partial Boolean function in <= Boolean variables with domain

{(G1 , . . . , G=) ∈ )= | (,(G1), . . . , ,(G=)) ∈ '} ⊆ ({0, 1}<)= .
A partial Boolean function models a decision task in computer science, whose domain is

the set of valid binary encodings of inputs to the task. An (-relation models a search problem,

where each input may correspond to more than one items in a search space (e. g., a Boolean

formula may have more than one satisfying assignments).

Relating the complexity of 5 ◦ ,= to the complexities of 5 and , is a natural research problem.

A query algorithm for computing an (-relation ℎ is allowed to query individual bits of the input G,
with the goal of outputting an element B such that (G, B) ∈ ℎ. The query complexity of an algorithm
is the maximum possible number of queries that it makes.

Query algorithms can be deterministic, randomized or quantum, where the latter two classes

allow for (bounded) errors. The corresponding query complexity of an (-relation ℎ – denoted,

respectively, by D(ℎ), ℝ(ℎ) or ℚ(ℎ) – is the minimal query complexity of an algorithm that

belongs to the corresponding class and computes ℎ with error 1/3. 1 Section 2 contains formal

definitions of various query complexity measures.

It is easy to see that D( 5 ◦ ,=) ≤ D( 5 ) · D(,). 2 For the cases of randomized and quantum

1ℝ&(ℎ) stands for the &-error randomized query complexity, and ℚ&(ℎ) denotes the &-error quantum query

complexity.

2To compute 5 ◦ ,= , one can simulate an optimal query algorithm for 5 , serving every query of this algorithm by

running an optimal query algorithm for ,.
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query complexity the argument is slightly more subtle, though very similar conceptually; in

particular, both ℝ( 5 ◦ ,=) ∈ $(ℝ( 5 ) ·ℝ(,) · logℝ( 5 )) and ℚ( 5 ◦ ,=) ∈ $(ℚ( 5 ) ·ℚ(,)) hold. 3

Showing strong lower bounds on the query complexity of 5 ◦ ,= (preferably, matching the

trivial upper bound) is often more interesting, the corresponding statements are sometimes

called composition theorems. Such results can lead to further theoretical developments (e. g.,

separating complexity measures, as well as different classes in structural complexity).

For deterministic query complexity it has been shown [14, 17] that

D( 5 ◦ ,=) = D( 5 ) · D(,),

which means that the trivial query algorithm for 5 ◦ ,= described above is optimal. Similarly, for

bounded-error quantum query complexity it has been shown [12, 15] that

ℚ( 5 ◦ ,=) ∈ Θ(ℚ( 5 ) ·ℚ(,)).

Prior to this work, the randomized query complexity of composition has remained an open

problem, even for the special case where 5 ⊆ {0, 1}= × {0, 1} and , : {0, 1}< → {0, 1} are total
Boolean functions. We partially solve it for the most general case of composition, namely, letting

5 be an (-relation and , be a partial Boolean function.

Theorem 1.1. For any (-relation 5 ⊆ {0, 1}= ×( and any partial Boolean function , ⊆ {0, 1}< ×{0, 1},

ℝ1/3( 5 ◦ ,=) ∈ Ω
(
ℝ4/9( 5 ) ·

√
ℝ1/3(,)

)
.

Note that the above lower bound does not match the trivial upper bound, so we address its

optimality separately. We do this by constructing an example where the above bound is tight.

In other words, while some incomparable lower bounds on ℝ1/3( 5 ◦ ,=) are conceivable, the

statement of Theorem 1.1 is a strongest possible statement in general. 4

Theorem 1.2. There exists a relation 50 ⊆ {0, 1}= × {0, 1}= and a partial Boolean function ,0 ⊆
{0, 1}= × {0, 1}, such that

ℝ4/9( 50) ∈ Θ(
√
=), ℝ1/3(,0) ∈ Θ(=) and ℝ1/3( 50 ◦ ,=0 ) ∈ Θ(=).

Theorem 1.2 shows that a perfect composition theorem does not hold when 5 is an (-relation

for an arbitrary finite set ( and , is any partial Boolean function. After the conference publication

of the current work, Ben-David and Blais [5] exhibited partial Boolean functions 5 and , such that

ℝ( 5 ◦ ,=) ∈ $̃(ℝ( 5 )2/3 ·ℝ(,)2/3); their example showed that a perfect composition theorem fails

to hold even when both 5 and , are partial Boolean functions. However, in their example, the

randomized query complexities grow logarithmically with the respective number of variables,

which leaves the following possibility open (mentioned as a conjecture in [5]).

3The multiplicative factor of logℝ( 5 ) in the case of ℝ(ℎ) is due to the need to reduce the error in computing each

instance of , to $( 1

ℝ( 5 ) ); in the quantum case this can be handled in a more elegant, “lossless” way.

4The following construction also witnesses the possibility of ℝ( 5 ◦ ,=) ∈ $(ℝ(,)) when ℝ( 5 ) ∈ Ω(
√
=) – in other

words, it is true in general that composition with a “hard” Boolean relation makes a Boolean function harder for randomized
query algorithms.
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Conjecture 1.3 (Ben-David and Blais [5]). Let 5 and , be any partial Boolean functions, and = be the
number of variables of 5 . Then

ℝ( 5 ◦ ,=) = Ω(ℝ( 5 ) ·ℝ(,))
log =

.

1.1 Our approach

We introduce a new complexity measure of Boolean functions, the max-conflict complexity,
denoted by "̄(,). We show that "̄(,) is a quadratically tight lower bound on the randomized

query complexity of a (partial) function ,.

Theorem 1.4. For any partial Boolean function , ⊆ {0, 1}< × {0, 1},

"̄(,) ∈ Ω
(√

ℝ1/3(,)
)
.

Theorem 1.4 is tight for the function ,0 in Theorem 1.2. The main technical ingredient of this

article is the following composition statement for the max-conflict complexity.

Theorem 1.5. For any (-relation 5 ⊆ {0, 1}= ×( and any partial Boolean function , ⊆ {0, 1}< ×{0, 1},

ℝ1/3( 5 ◦ ,=) ∈ Ω
(
ℝ4/9( 5 ) · "̄(,)

)
.

Theorem 1.4 and Theorem 1.5 together imply Theorem 1.1.

1.2 Prior work

In the special case of 5 being a partial function and , being a total one, significant progress has

been made by Ben-David and Kothari [7], who showed that

ℝ
1/3( 5 ◦ ,=) ∈ Ω

©«ℝ1/3( 5 ) ·

√
ℝ0(,)

logℝ0(,)
ª®¬ . (1.1)

To prove the above statement, the authors have introduced and investigated a new complexity

measure of Boolean functions, sabotage complexity, denoted by ℝS(,). The notion has a very

natural definition and is of independent interest. The authors have shown that for any partial

functions 5 , ,, ℝ
1/3( 5 ◦ ,=) = Ω(ℝ1/3( 5 ) ·ℝS(,)). The authors have further shown that if , is a

total Boolean function, then ℝS(,) = Ω
(√

ℝ0(,)
logℝ0(,)

)
. This implies (1.1). We note here that for

partial functions ,, ℝS(,) can be arbitrarily smaller than ℝ(,); the authors have shown a family

of partial functions (the collision problem) for which ℝS(,) = $(1), but ℝ(,) = Θ(
√
=), where =

is the size of the input.

In this article we show that max-conflict complexity is always lower-bounded by the sabotage

complexity of the same function.
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Theorem 1.6. For any partial Boolean function , ⊆ {0, 1}< × {0, 1},

"̄(,) ≥ ℝS(,).

Since 5 is a Boolean function, ℝ
1/3( 5 ) = Θ(ℝ4/9( 5 )); hence Theorem 1.6 along with Theo-

rem 1.5 imply (1.1).

1.3 Proof technique

At a high level, the proof of Theorem 1.5 follows the structure of the proof by Anshu et al. [3] and

Ben-David andKothari [7]. We show that for every probability distribution � over the input space
{0, 1}= of 5 , there exists a deterministic query algorithmA that makes $(ℝ1/3( 5 ◦ ,=)/

√
ℝ1/3(,))

queries in the worst case, and computes 5 with high probability, PrI∼�[(I,A(I)) ∈ 5 ] ≥ 5/9. By
the minimax principle (Fact 2.4) this implies Theorem 1.5.

We do this by using a query algorithm for 5 ◦ ,= to construct a query algorithm for 5 .

We define a sampling procedure that for any I ∈ {0, 1}= samples G = (G1 , . . . , G=) such that

(I, B) ∈ 5 if and only if (G, B) ∈ 5 ◦ ,= . This procedure is defined in terms of Q, which is a

probability distribution over pairs of distributions (�0 , �1), where �0 is supported on ,−1(0) and
�1 is supported on ,−1(1). We define a distribution �� over ({0, 1}<)= in terms of this sampling

process as follows:

1. Sample I = (I1 , . . . , I=) from {0, 1}= according to �.

2. Independently sample (�(8)
0
, �(8)

1
) from Q for 8 = 1, . . . , =.

3. Sample G8 = (G(1)8 , . . . , G
(<)
8
) according to �(8)I8 for 8 = 1, . . . , =. Return G = (G1 , . . . , G=).

Notice that steps (1) and (2) are independent and the order in which they are performed does

not matter. For future reference, for a fixed I let �I(Q) be the probability distribution defined by

the last two steps.

Now �� is simply a probability distribution over ({0, 1}<)= . Thus by the minimax principle

(Fact 2.4 below), there is a deterministic query algorithmA′ of worst-case complexity at most

ℝ
1/3( 5 ◦,=) such thatPrG∼��[(G,A′(G)) ∈ 5 ◦,=] ≥ 2/3. We first useA′ to construct a randomized

query algorithm ) for 5 with bounded expected query complexity and error at most 1/3. ) is

presented formally in Algorithm 3. The final algorithmA will be a truncation of ) which has

bounded worst-case complexity and error at most 4/9.
On input I, the algorithm ) seeks to sample a string G from �I(Q), and run A′ on G. Put

another way, �I(Q) induces a probability distribution over the leaves ofA′, and the goal of ) is

to sample a leaf ofA′ according to this distribution. Since for each B ∈ (, (G, B) ∈ 5 ◦ ,= if and
only if (I, B) ∈ 5 , and PrG∼��[(G,A′(G)) ∈ 5 ◦ ,=] ≥ 2/3, we have that PrI∼�[(I, )(I)) ∈ 5 ] ≥ 2/3.
Thus ) meets the accuracy requirement.

The catch, of course, is to specify how ) samples from �I(Q) without making too many queries
to I. To sample G8 from �(8)I8 seems to require knowledge of I8 , and thus ) would have to query

all of I.
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To bypass this problem, we remember thatA′, being an efficient algorithm, will query only

a few bits of G. This allows us to sample G bit by bit as and when they are queried byA′. To see

this more clearly, consider a run of ) where the pairs of distributions (�(1)
0
, �(1)

1
), . . . , (�(=)

0
, �(=)

1
)

were chosen in step (2) of the sampling procedure. Suppose that ) is trying to simulateA′ at a
vertex E where G

(9)
8

is queried. To respond to this query, ) will sample G
(9)
8

from its marginal

distribution according to �(8)I8 conditioned on the event G ∈ E. Let the following be the marginal

distributions of G
(9)
8

for the two possible values of I8 .

Pr
G8∼�(8)I8

[G(9)
8
= 0 | G ∈ E] Pr

G8∼�(8)I8
[G(9)
8
= 1 | G ∈ E]

I8 = 0 ?0 1 − ?0

I8 = 1 ?1 1 − ?1

Without loss of generality, assume that ?0 ≤ ?1. ) answers the query by the procedureBitsampler

given in Algorithm 1. Note that the bit returned by Bitsampler has the desired distribution.

Algorithm 1: Bitsampler (suppose ?0 ≤ ?1)

1 Sample A ∼ [0, 1] uniformly at random.

2 if A < ?0 then
3 return 0.

4

5 else if A > ?1 then
6 return 1.

7

8 else
9 query I8 .

10 if A ≤ ?I8 then
11 return 0.

12 else
13 return 1.

The step in which Bitsampler returns the bit depends on the value of A sampled in step 1. In

particular, I8 is queried if and only if A ∈ [?0 , ?1], and the bit is returned in step 11 or 13. Such a

query to I8 contributes to the query complexity of ). Thus the probability that ) makes a query

when the underlying simulation of A′ is at vertex E is (?1 − ?0). We refer to this quantity as

Δ(E). It plays an important role in our analysis (see Section 6 and Appendix 6.1).

Our sampling procedure and the toolswe use to bound its cost is reminiscent ofwork of Barak,

Braverman, Chen and Rao [4] in communication complexity. They look at a communication

analog of our setting where two players are trying to sample a leaf in a communication protocol

while communicating as little as possible.
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1.3.1 Conflict complexity and max-conflict complexity

Bounding the query complexity of ) naturally suggests the quantities that we define in this

article: the conflict complexity "(,) and the max-conflict complexity "̄(,) of a partial Boolean
function ,. A formal definition can be found in Section 3; here we give the high-level idea and

motivation behind these quantities.

Let us set aside ) for a moment and just consider a deterministic query algorithm ℬ
computing the partial function , ⊆ {0, 1}< × {0, 1}. Let �0 and �1 be distributions with support

on ,−1(0) and ,−1(1), respectively. For each vertex E ∈ ℬ let ?0(E) and ?1(E) be the probability
that the answer to the query at E is 0 on input G ∼ �0 and G ∼ �1, respectively, conditioned

on G reaching E. Now we can imagine a process P(ℬ , �0 , �1) that runs BITSAMPLER on the

tree ℬ: P(ℬ , �0 , �1) begins at the root, and at a vertex E in ℬ it uniformly chooses a random

real number A ∈ [0, 1]. If A < min{?0(E), ?1(E)} then the query is “answered” 0 and it moves

to the left child. If A > max{?0(E), ?1(E)} then the query is “answered” 1 and it moves to the

right child. If A ∈ [min{?0(E), ?1(E)},max{?0(E), ?1(E)}] then the process halts. The conflict

complexity "(ℬ , (�0 , �1)) is the expected number of vertices this process visits before halting.

The conflict complexity of , is defined to be

"(,) = max

(�0 ,�1)
min

)
"(), (�0 , �1)) ,

where the minimum is taken over trees ) that compute ,. For max-conflict complexity we enlarge

the set over which we maximize. Let Q be a distribution with finite support over pairs of

distributions (�0 , �1), where supp(�0) ⊆ ,−1(0), supp(�1) ⊆ ,−1(1) for each pair (�0 , �1) in the

support of Q. Let "(ℬ ,Q) = E(�0 ,�1)∼Q ["(ℬ , (�0 , �1))]. The max-conflict complexity "̄(,) is
defined as

"̄(,) = sup

Q
min

)
"(),Q) ,

where the minimum is taken over trees ) that compute ,. Clearly, the max-conflict complexity

is at least as large as the conflict complexity.

To motivate the max-conflict complexity, note that the query complexity of ) is the number

of times step 9 in Bitsampler is executed, i. e., when the random number A ∈ [?0 , ?1]. In the

definition of ) we will choose Q to achieve close to the optimal value in the definition of "̄(,).
Then intuitively one expects that for each 8, ) queries I8 only afterA′ makes about "̄(,) queries
into G8 . By means of a direct sum theorem for max-conflict complexity we make this intuition

rigorous and prove that the expected query complexity of ) is at most ℝ1/3( 5 ◦ ,=)/"̄(,). We

refer the reader to Section 5 for a formal proof.

1.3.2 "̄(,) and ℝ(,)

Note that applying Theorem 1.5 with the outer function 5 (I) = I1 shows thatℝ1/3(,) ∈ Ω("̄(,)).5
We complete the proof of Theorem 1.1 by showing that max-conflict complexity is a quadratically

5ℝ1/3(,) ∈ Ω("̄(,)) also follows fairly easily from the defintions of ℝ1/3(,) and "̄(,)).
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tight lower bound on randomized query complexity, even for partial functions ,. In fact, we

show the stronger result that this is true even for the conflict complexity.

Theorem 1.7. For any partial Boolean function , ⊆ {0, 1}< × {0, 1},

"(,) ∈ Ω
(√

ℝ1/3(,)
)
.

Theorem 1.7 is proved in Section 6. At a high level, our proof is reminiscent of the result of

[4] on compressing communication protocols in that both look at a random sampling process to

navigate a tree, and relate the probability of this process needing to query or communicate at a

node to the amount of information that is learned at the node.

To prove ℝ(,) ∈ $("(,)2), we again resort to the minimax principle; we show that for

each probability distribution � over the valid inputs to ,, there is an accurate and efficient

distributional query algorithm for ,. For 1 ∈ {0, 1}, let �1 be the distribution obtained by

conditioning � on the event ,(G) = 1. By the definition of "(,), there is a query algorithm ℬ
such that the following is true: if its queries are served by Bitsampler, step 9 is executed within

expected "(ℬ , �0 , �1) ≤ "(,) queries. Note that at a vertex E which queries 8, the probability

that step 9 is executed is Δ(E) = | Pr�0
[G8 = 0 | G at E] − Pr�1

[G8 = 0 | G at E]|. This roughly

implies that for a typical vertex E of ℬ, Δ(E) is at least about 1

"(,) . By a technical claim that we

prove (Claim 6.4) this implies that the query outcome at E carries about
1

"(,)2 bits of information

about ,(G). Using the chain rule of mutual information, we can show that the mutual information

between ,(G) and the outcomes of the first $("(,))2 queries by ℬ is Ω(1). This enables us

to conclude that we can infer the value of ,(G) with success probability 1/2 +Ω(1) from the

transcript of ℬ restricted to the first $("(,)2) queries. The distributional algorithm of , for � is

simply the algorithm ℬ terminated after $("(,)2) queries.

1.3.3 "̄(,) and ℝS(,)

To see why "̄(,) ≥ ℝS(,), we first give an alternative characterization of ℝS(,). For a

deterministic tree ) computing , and strings G, H such that ,(G) ≠ ,(H), let sep)(G, H) be the

depth of the node E in ) such that G and H both reach E yet G@(E) ≠ H@(E), where @(E) is the index
queried at E. Let T be a zero-error randomized protocol for ,, i. e., T is a probability distribution

supported on deterministic trees that compute ,. Then we have (for a proof see Appendix B)

ℝS(,) = min

T
max
G,H

,(G)≠,(H)

E)∼T [sep)(G, H)] .

By von Neumann’s minimax theorem [18], this is equal to

ℝS(,) = max

?
min

)
E(G,H)∼?[sep)(G, H)] .

Here, the max is taken over distributions ? on pairs (G, H) where ,(G) ≠ ,(H), and the min is

taken over deterministic trees ) computing ,.
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We have seen that the definition of "̄(,) is

"̄(,) = sup

Q
min

)
E(�0 ,�1)∼Q ["(), (�0 , �1))] ,

where Q is a distribution with finite support over pairs (�0 , �1) and ) is a deterministic tree

computing ,. When (�0 , �1) are taken to be singleton distributions, i. e., �0 puts all its weight

on a single G with ,(G) = 0, and �1 puts all its weight on a single H with ,(H) = 1, it is easy to

see that "(), (�0 , �1)) = sep)(G, H) (see Claim 3.4). Since there are only finitely many such pairs

(G, H), we have that "̄(,) is at least as large as the sabotage complexity of ,.

1.4 The conference version

A preliminary version of this paper appeared in the proceedings of ICALP 2019 [10]. Among

other revisions, some terminological confusion in the conference version is cleared up in this

paper.

1.5 Follow-up work

As mentioned before, after the conference publication of the present work [10], Ben-David and

Blais [5] exhibited partial Boolean functions 5 and , such that ℝ( 5 ◦ ,=) ∈ $̃(ℝ( 5 )2/3 ·ℝ(,)2/3),
ruling out the possibility of a perfect composition theorem even when both 5 and , are partial

Boolean functions. Later, Ben-David, Blais, Göös and Maystre [6] introduced the linearized
complexity measure LR(·). They showed the composition theorem ℝ( 5 ◦ ,=) = Ω(ℝ( 5 ) · LR(,))
for all partial Boolean functions 5 and ,. They further showed that LR(,) is the asymptotically

largest measure for which such a composition statement holds. Thus their composition theorem

is an improvement on Theorem 1.5.

2 Preliminaries

For ) ⊆ {0, 1}< , let , : ) → {0, 1} be a partial Boolean function. For 1 ∈ {0, 1}, ,−1(1) is defined
to be the set of strings {G ∈ ) | ,(G) = 1}. We refer to ) as the set of valid inputs to ,. For all
strings H ∉ ), we say that ,(H) = ∗. All probability distributions � over {0, 1}< considered in

connection with , are assumed to have support on ). Thus ,(G) is well-defined for any G in the

support of �.
Let ( be any finite set. Let ℎ ⊆ {0, 1}: × ( be any (-relation (which could also be a partial

Boolean function). For the sake of simplicity throughout the paper we will assume that for every

G ∈ {0, 1}: there exists an B ∈ ( such that (G, B) ∈ ℎ; the case in which there exists an G ∈ {0, 1}:
such that for all B ∈ ( (G, B) ∉ ℎ, can be easily handled by including all pairs in {(G, B) | B ∈ (} in
ℎ. Consider query algorithmsA that accept a string G ∈ {0, 1}: as input, query various bits of G,

and produce an element of ( as output. We denote the output byA(G).

Definition 2.1 (Deterministic query complexity). A deterministic query algorithmA is said to

compute an (-relation ℎ if (G,A(G)) ∈ ℎ for all G ∈ {0, 1}: . The deterministic query complexity
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D(ℎ) of ℎ is the minimum over all deterministic query algorithms A computing ℎ of the

maximum number of queries made byA over G ∈ {0, 1}: .

Definition 2.2 (Bounded-error randomized query complexity). Let & ∈ [0, 1/2). We say that a

randomized query algorithmA computes an (-relation ℎwith error & if Pr[(G,A(G)) ∈ ℎ] ≥ 1−&
for all G ∈ {0, 1}: . The bounded-error randomized query complexityℝ&(ℎ) of ℎ is the minimum

over all randomized query algorithmsA computing ℎ with error & of the maximum number of

queries made byA over all G ∈ {0, 1}: and the internal randomness ofA.

Definition 2.3 (Distributional query complexity). Let � a distribution on the input space {0, 1}:
of ℎ, and & ∈ [0, 1/2). We say that a deterministic query algorithmA computes an (-relation

ℎ with distributional error & on � if PrG∼�[(G,A(G)) ∈ ℎ] ≥ 1 − &. The distributional query

complexity D
�
& (ℎ) of ℎ is the minimum over deterministic algorithms A computing ℎ with

distributional error & on � of the maximum over G ∈ {0, 1}: of the number of queries made by

A on G.

Wewill use theminimax principle in our proofs to go between distributional and randomized

query complexity.

Fact 2.4 (Minimax principle). For any integer : > 0, finite set (, and (-relation ℎ ⊆ {0, 1}: × S,

ℝ&(ℎ) = max

�
D
�
& (ℎ).

We present a proof of Fact 2.4 in Appendix A.

Let � be a probability distribution over {0, 1}: . We use supp(�) to denote the support of �.
By G ∼ �we mean that G is a random string drawn from �. Let � ⊆ {0, 1}: be an arbitrary set

such that PrG∼�[G ∈ �] =
∑
H∈� �(H) > 0. Then � | � is defined to be the probability distribution

obtained by conditioning � on the event that the sampled string belongs to �, i. e.,

(� | �)(G) =
{

0 if G ∉ �
�(G)∑
H∈� �(H)

if G ∈ �

For a distribution Q over pairs of distributions (�0 , �1), let supp
0
(Q) = ∪{supp(�0) :

∃�1 , (�0 , �1) ∈ supp(Q)}. Similarly let supp
1
(Q) = ∪{supp(�1) : ∃�0 , (�0 , �1) ∈ supp(Q)}. We

say that Q is consistent if supp
0
(Q) and supp

1
(Q) are disjoint sets. We say that Q is consistent

with a (partial) function , if supp
0
(Q) ⊆ ,−1(0) and supp

1
(Q) ⊆ ,−1(1). All such distributions

Q considerd in this paper will be assumed to have finite support.

Definition 2.5 (Subcube, codimension). A subset ℂ ⊆ {0, 1}< is called a subcube if there

exists a set ( ⊆ {1, . . . , <} of indices and an assignment function � : ( → {0, 1} such that

ℂ = {G ∈ {0, 1}< : ∀8 ∈ (, G8 = �(8)}. The codimension codim(ℂ) of ℂ is defined to be |( |.

The composition of an (-relation and a partial Boolean function plays a central role in this

paper. See Section 1 for a definition.
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We will often view a deterministic query algorithm as a binary decision tree. In each

vertex E of the tree, an input variable is queried. Depending on the outcome of the query, the

computation goes to a child of E. The child of E corresponding to outcome 1 of the query is

denoted by E1 .

The set of inputs that lead the computation of a decision tree to a certain vertex is a subcube.

We will use the same symbol (e. g., E) to refer to a vertex as well as the subcube associated with

it.

The execution of a decision tree terminates at some leaf. If the tree computes some (-relation

ℎ ⊆ {0, 1}: × (, the leaves are labelled by elements of (, and the tree outputs the label of the leaf

at which it terminates. We will also consider decision tree with unlabelled leaves (see Section 4).

3 Conflict complexity

In this section, we define the conflict complexity andmax-conflict complexity of a partial Boolean

function , on < bits. For this, we will need to introduce some notation related to a deterministic

decision tree ). For a node E ∈ ), let �(E) = ⊥ if E is the root and �(E) be the parent of E

otherwise. Let @(E) be the index that is queried at E in ), and let 3)(E) be the number of vertices

on the unique path in ) from the root to E (i. e., the depth of E). The depth of the root is 1.

Now fix a partial function , ⊆ {0, 1}< × {0, 1} and probability distributions �0 , �1 over

,−1(0), ,−1(1), respectively. Let ) be a tree that computes ,. For a node E ∈ ) let ?0(E) =
Pr�0
[G@(E) = 0|G at E] and ?1(E) = Pr�1

[G@(E) = 0|G at E], and

'(E) =


1 if E is the root,

'(�(E)) ·min{Pr�0
[G ∈ E |G ∈ �(E)], Pr�1

[G ∈ E |G ∈ �(E)]}
otherwise .

Also define

Δ(E) = |?0(E) − ?1(E)| .
To gather intuition about these quantities, imagine a random walk on ) that begins at the root.

At a node E, this walk moves to the left child with probability min{?0(E), ?1(E)}, and it moves to

the right child with probability 1 −max{?0(E), ?1(E)}. With the remaining probability, Δ(E), it
terminates at E. '(E) is the probability that the walk reaches E. The walk always terminates

before it reaches a leaf of ). To see why, note that if the walk reaches a leaf before terminating,

then there are two inputs G ∈ ,−1(0), H ∈ ,−1(1) both of which lead the computation of ) to the

same leaf, which contradicts the assumption that ) computes ,. Hence for any tree ) computing

, we have

∑
E∈) Δ(E)'(E) = 1. In particular, this means that

∑
E∈) 3)(E)Δ(E)'(E)—the expected

number of steps the walk takes before it terminates—is always at most the depth of the tree ).

Definition 3.1 (Conflict complexity and max-conflict complexity). Let , be a partial function.

For distributions �0 , �1 with supp(�1) ⊆ ,−1(1) for 1 ∈ {0, 1}, and a deterministic decision tree

) computing ,, define

"(), (�0 , �1)) =
∑
E∈)

3)(E)Δ(E)'(E) .
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The conflict complexity of , is

"(,) = max

�0 ,�1

min

)
"(), (�0 , �1)) ,

where the maximum is over all pairs of distributions (�0 , �1), where �0 and �1 are supported on

,−1(0) and ,−1(1), respectively, and theminimum is taken over all deterministic trees) computing

,. ForQ adistributionwithfinite support over pairs of distributions satisfying supp1(Q) ⊆ ,−1(1)
for 1 ∈ {0, 1}, and ) a deterministic tree computing ,, let "(),Q) = E(�0 ,�1)∼Q["(), (�0 , �1))].
Finally, the max-conflict complexity of , is

"̄(,) = sup

Q
min

)
"(),Q) ,

where the supremum is taken over Q with finite support such that supp1(Q) ⊆ ,−1(1) for
1 ∈ {0, 1}, and the minimum is taken over deterministic trees ) computing ,.

We can extend the definition of conflict complexity and max-conflict complexity to more

general query processes that do not necessarily compute a function. We first need the notion of

FULL.

Definition 3.2. For a deterministic tree ) and pair of distributions (�0 , �1)with disjoint support,

we say that (), (�0 , �1)) is FULL if

∑
E∈) Δ(E)'(E) = 1, i. e., if the random walk described above

terminates with probability 1. We say that (),Q) is FULL if (), (�0 , �1)) is FULL for each

(�0 , �1) ∈ supp(Q).
Definition 3.3. For a deterministic tree ) and pair of distributions (�0 , �1) such that (), (�0 , �1))
is FULL, define "(), (�0 , �1)) =

∑
E∈) 3)(E)Δ(E)'(E). For a distribution Q such that (),Q) is

FULL, define "(),Q) = E(�0 ,�1)∼Q["(), (�0 , �1))].

3.1 Comparison with other query measures

The definition of conflict complexity appeared for the first time in [16], which is one of the

two papers the current paper is a merger of (the other paper being [9]). Li [13] analyzed this

definition and showed that the conflict complexity of a total Boolean function , is at least the

block sensitivity of ,. Here we show that the max-conflict complexity of a (partial) function ,
is at least as large as the sabotage complexity of ,. For a total Boolean function ,, Ben-David

and Kothari [7] show that the sabotage complexity of , is at least as large as the fractional block

sensitivity of , [1, 17, 11], which in turn is at least as large as the block sensitivity. They also show

examples where the sabotage complexity is much larger than the partition bound, quantum

query complexity and approximate polynomial degree, thus the same holds for max-conflict

complexity as well.

We first need the following simple claim. Let �G be the probability distribution that puts

weight 1 on the string G.

Claim 3.4. Let ) be a deterministic tree computing the partial function , and let G, H be such that
,(G) = 0, ,(H) = 1. Then

"(), (�G , �H)) = sep)(G, H) .
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Proof. Let E1 be the root of ), and E1 , E2 , . . . , EC be the longest sequence of vertices in ) that

are visited both by G and H, i. e., G@(EC ) ≠ H@(EC ). Since ) computes ,, EC is not a leaf. For each

8 = 1, . . . , C − 1 we see that Δ(E8) = 0, while Δ(EC) = 1. Also '(E8) = 1 for each 8 = 1, . . . , C, while

'(E) = 0 for any other vertex. Thus

∑
E∈) 3(E)Δ(E)'(E) = C = sep)(G, H). �

Theorem 3.5. Let , ⊆ {0, 1}< × {0, 1} be a partial Boolean function. Then "̄(,) ≥ ℝS(,).

Proof. By Theorem B.1 (Appendix B),

ℝS(,) = max

?
min

)
E(G,H)∼?[sep)(G, H)] .

By definition of max-conflict complexity we have

"̄(,) = sup

Q
min

)
E(�0 ,�1)∼Q["(), (�0 , �1))] .

The distribution ? in sabotage complexity is a special case ofQ where all the pairs of distributions

in the support are singleton distributions. Note that ? has finite support. The theorem now

follows from Claim 3.4. �

4 Query process

We now come to the most important definition of the paper, that of the query process P(ℬ ,Q).
Let C > 0 be any integer and ℬ be any deterministic query algorithm that runs on inputs in

({0, 1}<)C . Let G = (G(9)
8
) 8=1,...,C
9=1,...,<

be a generic input to ℬ, and let G8 stand for (G(9)
8
)9=1,...,< . For a

vertex E of ℬ, let E(8) denote the subcube in E projected to G8 , i. e., E = E
(1) × . . . × E(C). Recall

from Section 2 that E1 stands for the child of E corresponding to the query outcome being 1, for

1 ∈ {0, 1}.
The query process P(ℬ ,Q) runs on an input I ∈ {0, 1}C and uses the BITSAMPLER

(Algorithm 1) routine to simulate the queries of ℬ to G when it can. This process is the heart of

how we will transform an algorithm for 5 ◦ ,= into a query efficient algorithm for 5 .

Definition 4.1 (Query process P(ℬ ,Q)). Let ℬ be a decision tree that runs on inputs from

({0, 1}<)C . Let Q be a consistent probability distribution with finite support over pairs of

distributions (�0 , �1). The query process P(ℬ ,Q) is run on an input I ∈ {0, 1}C and is defined

by Algorithm 2.

A few comments about Definition 4.1. First, we think of ℬ and P as query procedures that

query input variables and terminate. In particular, they do not have to produce outputs, i. e.,

their leaves do not have to be labeled. Second, note that in Algorithm 2 the segment from line 9

to line 19 corresponds to the Bitsampler procedure in Algorithm 1. Queries to the input bits I8
are made in line 15, which corresponds to step 9 of Bitsampler. Finally, the variables ℕ8 are not

directly used by the algorithm, but are used in its analysis.
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Algorithm 2: P(ℬ ,Q)
Input: I = (I1 , . . . , IC) ∈ {0, 1}C .

1 for 1 ≤ : ≤ C do
2 QUERY: ← 0. // Indicates if I: is queried.
3 ℕ: ← 0. // Counts references to G: till I: is queried.

4 Sample (�(:)
0
, �(:)

1
) from Q.

5 E ←Root of ℬ // Corresponds to ({0, 1}<)C.
6 while E is not a leaf of ℬ do
7 Let @(E) = (8 , 9), the 9Cℎ coordinate of G8
8 if QUERY8 = 0 then
9 Sample a fresh real number A ∼ [0, 1] uniformly at random.

10 if A < min1 Pr
G8∼�(8)1

[G(9)
8
= 0 | G8 ∈ E(8)] then

11 E ← E0.

12 else if A > max1 Pr
G8∼�(8)1

[G(9)
8
= 0 | G8 ∈ E(8)] then

13 E ← E1.

14 else
15 Query I8 . QUERY8 ← 1.

16 if A ≤ Pr
G8∼�(8)I8

[G(9)
8
= 0 | G8 ∈ E(8)] then

17 E ← E0.

18 else
19 E ← E1.

20 ℕ8 ← ℕ8 + 1.

21 else

22 1 ←


1 with probability Pr
G8∼�(8)I8

[G(9)
8
= 1 | G8 ∈ E(8)]

0 with probability Pr
G8∼�(8)I8

[G(9)
8
= 0 | G8 ∈ E(8)]

23 E ← E1

We now present an important structural result about P(ℬ ,Q). In particular, this formally

proves that the procedure Bitsampler given in Algorithm 1 samples the bits from the right

distribution. The theorem should be intuitively clear, but we present a formal proof for

completeness. Recall the definition of �I(Q) from Section 1.3.

Theorem 4.2 (Simulation Theorem). Let ℬ be a deterministic decision tree running on inputs from
({0, 1}<)C , and let E be a vertex in ℬ. Let �I(E,Q) be the event that P(ℬ ,Q), when run on I, reaches
node E. Let �I(E,Q) be the event that for a random input G sampled from �I(Q), the computation of ℬ
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reaches E. Then for every I ∈ {0, 1}C and each vertex E of ℬ,

Pr[�I(E,Q)] = Pr[�I(E,Q)] .

Proof. To save writing, we fix I ∈ {0, 1}C and Q and let �(E) := �I(E,Q) be the event that

P(ℬ , &) reaches node E on input I, and �(E) := �I(E,Q) be the event that ℬ reaches node E

under the distribution �I(Q). Additionally, we write (�0 , �1) = ((�(1)
0
, �(1)

1
), . . . , (�(C)

0
, �(C)

1
)) for a

C-tuple of pairs of distributions. In the following when we write E(�0 ,�1)∼QC this expectation is

taken with respect to drawing each (�(8)
0
, �(8)

1
) independently from Q.

Now notice that Pr[�(E)] = E(�0 ,�1)∼QC Pr[�(E) | (�0 , �1)] and Pr[�(E)] = E(�0 ,�1)∼QC

Pr[�(E) | (�0 , �1)]. We prove by induction on 3(E), the depth of a node E, that

Pr[�(E) | (�0 , �1)] = Pr[�(E) | (�0 , �1)] (4.1)

for any (�0 , �1). This will give the claim.

Towards the aim of showing (4.1), fix an arbitrary (�0 , �1).

Base case: 3(E) = 1, i. e., E is the root of ℬ. Thus Pr[�(E) | (�0 , �1)] = Pr[�(E) | (�0 , �1)] = 1.

Inductive step: Assume that 3(E) ≥ 2, and that the statement is true for all vertices of depth at

most 3(E) − 1. Since 3(E) ≥ 2, E is not the root of ℬ. Let D = D(1) × . . .× D(C) be the parent of
E, and say variable G

(9)
8

is queried at D. Without loss of generality we assume that E = D0.

We split the proof into the following two cases.

• Case 1: Pr
G8∼�(8)I8

[G(9)
8
= 0 | G8 ∈ D(8)] ≤ Pr

G8∼�(8)I8
[G(9)
8
= 0 | G8 ∈ D(8)].

Conditioned on �(D), (�0 , �1) and QUERY8 = 1, the probability that P reaches E is

Pr
G8∼�(8)I8

[G(9)
8
= 0 | G8 ∈ D(8)]. Also, conditioned on �(D), (�0 , �1) and QUERY8 = 0

the probability that P reaches E is exactly equal to the probability that the real

number A sampled at D lies in [0, Pr
G8∼�(8)I8

[G(9)
8
= 0 | G8 ∈ D(8)]], which is equal to

Pr
G8∼�(8)I8

[G(9)
8
= 0 | G8 ∈ D(8)]. Thus,

Pr[�(E) | (�0 , �1)] = Pr[�(D) | (�0 , �1)] · Pr[�(E) | �(D), (�0 , �1)]

= Pr[�(D) | (�0 , �1)] · Pr

G8∼�(8)I8
[G(9)
8
= 0 | G8 ∈ D(8)]. (4.2)

Now condition on �(D) and (�0 , �1). The probability that ℬ reaches E is exactly

equal to the probability that G
(9)
8
= 0 when G is sampled according to the distribution
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�I((�0 , �1)) conditioned on the event that G ∈ D. Note that in the distribution

�I((�0 , �1)), the G: ’s are independently distributed. Thus,

Pr[�(E) | (�0 , �1)] = Pr[�(D) | (�0 , �1)] · Pr[�(E) | �(D), (�0 , �1)]

= Pr[�(D) | (�0 , �1)] · Pr

G8∼�8I8
[G(9)
8
= 0 | G8 ∈ D(8)]. (4.3)

By the inductive hypothesis, Pr[�(D) | (�0 , �1)] = Pr[�(D) | (�0 , �1)]. It follows

from (4.2) and (4.3) that Pr[�(E) | (�0 , �1)] = Pr[�(E) | (�0 , �1)].
• Case 2: Pr

G8∼�(8)I8
[G(9)
8
= 0 | G8 ∈ D(8)] > PrG8∼�

I
(8)
8

[G(9)
8
= 0 | G8 ∈ D(8)]. Let E′ = D1. By an

argument similar to Case 1, we have that

Pr[�(E′) | (�0 , �1)] = Pr[�(E′)(�0 , �1)]. (4.4)

Now,

Pr[�(E) | (�0 , �1)] = Pr[�(D) | (�0 , �1)] − Pr[�(E′) | (�0 , �1)]
= Pr[�(D) | (�0 , �1)] − Pr[�(E′) | (�0 , �1)]

(By inductive hypothesis)

= Pr[�(D) | (�0 , �1)] − Pr[�(E′) | (�0 , �1)]
(By (4.4))

= Pr[�(E) | (�0 , �1)] .

�

We will be interested in the number of queries P(ℬ ,Q) is able to simulate before making a

query to I8 . To this end, let the random variableN8(ℬ , I,Q) stand for the value of the variable

ℕ8 in Algorithm 2 after the termination of P(ℬ ,Q) on input I. Note that N8 depends on the

randomness in the choices of A (step 9) and also on the randomness in Q in the choice of

distributions (�(:)
0
, �(:)

1
) (step 4).

4.1 Relating P(ℬ ,Q) to max-conflict complexity

A key to our composition theorem will be relating the number of simulated queries made by

P(ℬ ,Q) to max-conflict complexity, which we do in this section. Let ℬ be a query algorithm

taking inputs from {0, 1}< . In this case,N1(ℬ , 1,Q) = N1(ℬ , 0,Q). This is because the behavior
of P(ℬ ,Q) on input 0 is exactly the same as the behavior on input 1 before a query to I is made,

and after I is queried the value of ℕ8 does not change.

Claim 4.3. Let ℬ be an algorithm taking inputs from {0, 1}< . Then (ℬ ,Q) is FULL if and only if
P(ℬ ,Q) queries I with probability 1. If (ℬ ,Q) is FULL then

"(ℬ ,Q) = E[N1(ℬ , 1,Q)]
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Proof. Note that until I is queried, P(ℬ , (�0 , �1)) exactly executes the random walk described

in Section 3, and querying I in P(ℬ , (�0 , �1)) corresponds to this random walk terminating.

The first part of the claim then follows as P(ℬ ,Q) queries I with probability 1 if and only if

P(ℬ , (�0 , �1)) queries I with probability 1 for every (�0 , �1) ∈ supp(Q).
Also, because P(ℬ , (�0 , �1)) exactly executes the random walk described in Section 3, we

see that "(ℬ , (�0 , �1)) = E[N1(ℬ , 1, (�0 , �1))]. The second part of the claim follows by taking

the expectation of this equality over (�0 , �1) ∼ Q. �

The correspondence of Claim 4.3 prompts us to define FULL in a more general setting.

Definition 4.4 (FULL). Let ℬ be a query algorithm taking inputs from ({0, 1}<)C . The pair

(ℬ ,Q) is said to be FULL if for every I ∈ {0, 1}C it holds that P(ℬ ,Q) queries I8 with probability

1, for every 8 = 1, . . . , C.

5 The Composition Theorem

In this section we prove Theorem 1.5 (restated below).

Theorem 5.1. For any (-relation 5 ⊆ {0, 1}= ×( and any partial Boolean function , ⊆ {0, 1}< ×{0, 1},
ℝ1/3( 5 ◦ ,=) ∈ Ω

(
ℝ4/9( 5 ) · "̄(,)

)
.

Our proof will make use of the following direct sum theorem.

Theorem 5.2. Let ℬ be a query algorithm acting on inputs from ({0, 1}<)C . Let Q be a consistent
distribution with finite support over pairs of distributions (�0 , �1) on <-bit strings. If (ℬ ,Q) is FULL
then for any I ∈ {0, 1}C

C∑
8=1

E[N8(ℬ , I,Q)] ≥ C ·min

C
"(C ,Q) ,

where the minimum is taken over deterministic trees C acting on inputs from {0, 1}< such that (C ,Q) is
FULL.
Proof of Theorem 5.2. Towards a contradiction, assume that

C∑
8=1

E[N8(ℬ , I,Q)] < C ·min

C
E(�0 ,�1)∼Q["(C , (�0 , �1))] . (5.1)

By averaging, there exists a : such that E[N:(ℬ , I,Q)]] < minC E(�0 ,�1)∼Q
["(C , (�0 , �1))]. Let us focus on the expression on the left hand side. Recall that there are two

kinds of randomness in this expectation, the choice of the random numbers A in P(ℬ ,Q) and
the choice of (�0 , �1) ∼ QC . We separate out these two as follows:

E[N:(ℬ , I,Q)] = E(�0 ,�1)∼QCEA[N:(ℬ , I, (�0 , �1)]

= EAE(�0 ,�1)∼QC [N:(ℬ , I, (�0 , �1)]

= EAE(�0 ,�1)
−(:)
∼QC−1

E(�(:)
0
,�(:)

1
)∼Q[N:(ℬ , I, (�0 , �1)] ,
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where (�0 , �1)
−(:)

is a (C − 1)-tuple of pairs of distributions without the :Cℎ coordinate. This

further means that there is a fixing of the randomness A and the (C−1)-tuple of pairs distributions
(�0 , �1)

−(:)
such that E(�(:)

0
,�(:)

1
)∼Q[N:(ℬ , I, (�0 , �1)] < minC E(�0 ,�1)∼Q["(C , (�0 , �1))]. With such

a fixed setting, however,P(ℬ ,Q) creates a query process equivalent toP(ℬ′,ℚ) run on I8 ∈ {0, 1}
for a deterministic query algorithm ℬ′ running on inputs from {0, 1}< and such that (ℬ′,Q) is
FULL. The distribution E(�0 ,�1)∼Q[N1(ℬ′, 1, �0 , �1)] is the same as that as E(�(:)

0
,�(:)

1
)∼Q[N:(ℬ , I,

((�0 , �1)
−(:)

, (�(:)
0
, �(:)

1
))] conditioned on the earlier fixing of (�0 , �1)

−(:)
and the randomness A.

Thus E(�0 ,�1)∼Q["(ℬ′, (�0 , �1))] < minC E(�0 ,�1)∼Q["(C , (�0 , �1))], a contradiction. �

Proof of Theorem 1.5. We shall prove that for each distribution � on the inputs to 5 , there is a

randomized query algorithmA making at most 18ℝ1/3( 5 ◦,=)/"̄(,) queries in the worst case, for

which PrI∈�[(I,A(I)) ∈ 5 ] ≥ 5

9
holds. A can be made deterministic with the same complexity

and accuracy guarantees by appropriately fixing its randomness. This will imply the theorem

by the minmax principle (Fact 2.4). To this end let us fix a distribution � over {0, 1}= .
Let Q be a distribution with finite support which is consistent with , such that for any

deterministic decision tree C computing , we have "(C ,Q) ≥ "̄(,) − &, where & is to be set later.

We will use distributions � and Q to set up a distribution �� over the input space of 5 ◦ ,= . This
distribution is defined as follows:

1. Sample I = (I1 , . . . , I=) from �.

2. Sample (�(8)
0
, �(8)

1
) independently from Q for 8 = 1, . . . , C.

3. Sample G8 from �(8)I8 for 8 = 1, . . . , C. Return G = (G1 , . . . , GC).

Recall from Section 1.3 the observation that for each I, G sampled as above, for each B ∈ S,
(I, B) ∈ 5 if and only if (G, B) ∈ 5 ◦ ,= .

Assume that ℝ1/3( 5 ◦ ,=) = 2. The minimax principle (Fact 2.4) implies that there is a

deterministic query algorithm A′ for inputs from ({0, 1}<)= , that makes at most 2 queries in

the worst case, such that PrG∈��[(G,A′(G)) ∈ 5 ◦ ,=] ≥ 2

3
. We will first use A′ to construct a

randomized algorithm ) for 5 whose accuracy under the distribution � is as desired and which,

for every input I, makes few queries in expectation. ) is described in Algorithm 3.

Algorithm 3: )
Input: I ∈ {0, 1}=

1 Run P(A′,Q) on I.
2 Return the output ofA′.

First we bound the probability of error by ). By Theorem 4.2, we have that Pr[(I, )(I)) ∈
5 ] = PrG∼�I(Q)[(G,A′(G)) ∈ 5 ◦ ,=] for each I ∈ {0, 1}= . Thus, PrI∼�[(I, )(I)) ∈ 5 ] =
PrG∼��[(G,A′(G)) ∈ 5 ◦ ,=] ≥ 2

3
.

Next, we bound the expected number of queries made by ) in the worst-case.
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Claim 5.3. The expected number of queries made by ) on each input I is at most 22
"̄(,) .

Proof. Fix an input I ∈ {0, 1}= . For each leaf ℓ = ℓ (1) × . . . × ℓ (=) ofA′ and for each 8 = 1, . . . , =

define ℰ′
8 ,ℓ

to be the event that the computation of P(A′,Q) finishes at ℓ with QUERYi = 0. For

8 = 1, . . . , = define ℱ ′
8
to be the event that QUERYi is set to 1 in P(A′,Q). Let Q= stand for the

(product) distribution of = pairs of probability distributions each independently sampled from

Q. For 8 , ℓ such that , is not constant on ℓ (8), letD8 ,ℓ be the distribution given by the following

sampling procedure:

1. Sample (�(1)
0
, �(1)

1
), . . . , (�(=)

0
, �(=)

1
) from Q= conditioned on ℰ′

8 ,ℓ
,

2. return (�(8)
0
| ℓ (8) , �(8)

1
| ℓ (8)).

Let ℬ8 ,ℓ be an optimal tree forD8 ,ℓ , i. e., "(ℬ8 ,ℓ ,D8 ,ℓ ) = minC "(C ,D8 ,ℓ ), where the minimization

is over all algorithms C that output 0 on supp
0
(D8 ,ℓ ) and output 1 on supp

1
(D8 ,ℓ ). Now, consider

the query algorithm � defined in Algorithm 4. Note that (�,Q) is FULL. Now consider a

Algorithm 4: �
Input: G ∈ ({0, 1}<)=

1 RunA′ on G.
2 LetA′ terminate at leaf ℓ = ℓ (1) × . . . × ℓ (=).
3 for 1 ≤ 8 ≤ = do
4 if , is not constant on ℓ (8) then
5 Run ℬ8 ,ℓ on G8 .

run of the query process P(�,Q) on input I. Theorem 5.2 implies that

∑=
8=1

E[N8(�, I,Q)] ≥
= ·minC "(C ,Q) = = · ("̄(,) − &), by the choice of Q.

Let ℱ8 to be the event that QUERYi is set to 1 in P(�,Q) when it reaches a leaf of A′, and
for each leaf ℓ ofA′ let ℰ8 ,ℓ be the event that P(�,Q) reaches ℓ and QUERYi = 0 when it does.

Observe that for each 8 = 1, . . . , =, the events {ℱ8 , (ℰ8 ,ℓ )ℓ } are mutually exclusive and exhaustive.

We have that

= · ("̄(,) − &) ≤
=∑
8=1

E[N8(�, I,Q)]

=

=∑
8=1

∑
ℓ

Pr[ℰ8 ,ℓ ] · E[N8(�, I,Q) | ℰ8 ,ℓ ] +
=∑
8=1

Pr[ℱ8] · E[N8(�, I,Q) | ℱ8] (5.2)

Let 38(ℓ ) be the number of queries into G8 made in the unique path from the root ofA′ to ℓ . Now,

condition on the = pairs of distributions (�(9)
0
, �
(9)
1
)9=1,...,= that are used in P(�,Q). We have that,

E[N8(�, I,Q) | ℰ8 ,ℓ , (�(9)
0
, �
(9)
1
)9=1,...,=] = 38(ℓ (8)) + E[N1(ℬ8 ,ℓ , I8 , (�(8)

0
| ℓ (8) , �(8)

1
| ℓ (8)))]. (5.3)
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Averaging over (�(9)
0
, �
(9)
1
)9=1,...,= we have from (5.3) that

E[N8(�, I,Q) | ℰ8 ,ℓ ] = 38(ℓ (8)) + E[N1(ℬ8 ,ℓ , I8 ,D8 ,ℓ )]
= 38(ℓ (8)) +min

C
"(C ,D8 ,ℓ ) (By the choice of ℬ8 ,ℓ ).

≤ 38(ℓ (8)) + "̄(,). (5.4)

Observing that

∑
ℓ Pr[ℰ8 ,ℓ ] = 1 − Pr[ℱ8], we have from (5.2) and (5.4) that

= · ("̄(,) − &) ≤
=∑
8=1

∑
ℓ

Pr[ℰ8 ,ℓ ] · (38(ℓ (8)) + "̄(,)) +
=∑
8=1

Pr[ℱ8] · E[N8(�, I,Q) | ℱ8]

=

=∑
8=1

(1 − Pr[ℱ8]) · "̄(,)

+
=∑
8=1

(∑
ℓ

(Pr[ℰ8 ,ℓ ] · 38(ℓ (8)) + Pr[ℱ8] · E[N8(�, I,Q) | ℱ8])
)

⇒
=∑
8=1

Pr[ℱ8] ≤
1

"̄(,) ·
=∑
8=1

(∑
ℓ

(Pr[ℰ8 ,ℓ ] · 38(ℓ (8)) + Pr[ℱ8] · E[N8(�, I,Q) | ℱ8])
)

+ =&

"̄(,) . (5.5)

We will show that

∑=
8=1

(∑
ℓ (Pr[ℰ8 ,ℓ ] · 38(ℓ (8)) + Pr[ℱ8] · E[N8(�, I,Q) | ℱ8])

)
≤ 2. We set & ≤ 2

= .

Since

∑=
8=1

Pr[ℱ8] is exactly the expected number of queries made by ), the claim will follow

from (5.5).

Consider a run of P(�,Q) on input I, and let 28 be a random variable denoting the number

of times step 7 of Algorithm 2 (with ℬ = �) is a query into G8 before a leaf of A′ is reached,
for 8 = 1, . . . , =. Thus

∑=
8=1

E[28] ≤ 2. Further, for each 8 , ℓ we have 38(ℓ (8)) = E[28 | ℰ8 ,ℓ ] and
E[N8(�, I,Q) | ℱ8] = E[N8(A′, I,Q) | ℱ8] ≤ E[28 | ℱ8]. Thus,

=∑
8=1

(∑
ℓ

(Pr[ℰ8 ,ℓ ] · 38(ℓ (8)) + Pr[ℱ8] · E[N8(�, I,Q) | ℱ8])
)

≤
=∑
8=1

(∑
ℓ

(Pr[ℰ8 ,ℓ ] · E[28 | ℰ8 ,ℓ ]) + Pr[ℱ8] · E[28 | ℱ8]
)

=

=∑
8=1

E[28] ≤ 2.

�

Now we finish the proof of Theorem 1.5 by constructing the query algorithmA. LetA′′ be
the algorithm obtained by terminating ) after 182/"̄(,) queries. ByMarkov’s inequality, for each
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I, the probability that ) makes more than 182/"̄(,) queries is at most 1/9. ThusA′′ computes 5

with probability at least 2/3 − 1/9 = 5/9 on a random input from �. Finally,A is obtained by fixing

the randomness ofA′′ appropriately so that the above probabilistic guarantee holds. �

6 Conflict complexity and randomized query complexity

In this section, we will prove Theorem 1.7 (restated below). Our proof relates the conflict

complexity to the expected amount of information that is learned about the function value

through each query via Pinsker’s Inequality. At a high level, our proof is reminiscent of the result

of [4] on compressing communication protocols in that both look at a random sampling process

to navigate a tree, and relate the probability of this process needing to query or communicate at

a node to the amount of information that is learned at the node.

Theorem 6.1 (Restatement of Theorem 1.7). For any partial Boolean function , ⊆ {0, 1}< × {0, 1},

"(,) ∈ Ω
(√

ℝ1/3(,)
)
.

Proof. We will show that there exists a constant & < 1/2 such that for each input distribution

�, D
�
& (,) ≤ 10"(,)2. Theorem 1.7 will follow from the minimax principle (Fact 2.4), and the

observation that the error can be brought down to 1/3 by constantlymany independent repetitions

followed by a selection of the majority of the answers. It is enough to consider distributions �
supported on valid inputs of ,. To this end, fix a distribution � supported on ,−1(0) ∪ ,−1(1).
Define �0 := � | ,−1(0), �1 := � | ,−1(1).

Let "(,) = 3. Let ℬ be a deterministic query algorithm for inputs in {0, 1}< such that

(ℬ , �0 , �1) is FULL and "(�0 , �1) = "(ℬ , �0 , �1). We call such a decision tree an optimal decision
tree for �0 , �1. Thus in P(ℬ , �0 , �1), E[N1] = "(�0 , �1) ≤ 3. Recall from Section 4 that the leaves

of ℬ can be labelled by bits such that ℬ computes , on the supports of �0 and �1. We assume

ℬ’s leaves to be labelled as such.

Consider the following query algorithm ℬ′: Start simulating ℬ. Terminate the simulation if

one of the following events occurs. The output in each case is specified below.

1. If 1032
queries havebeenmadeand E

1032+1
≠ ⊥, terminate andoutputarg max1 PrG∼�[,(G) =

1 | G ∈ E
1032+1

].

2. If ℬ terminates, terminate and output what ℬ outputs.

By construction, ℬ′ makes at most 1032
queries in the worst case. The following claim bounds

the error of ℬ′, and completes the proof of Theorem 1.7.

Claim 6.2. There exists a constant & < 1/2 such that PrG∼�[ℬ′(G) ≠ ,(G)] ≤ &. Furthermore, the
constant & is independent of �.

Proof of Claim 6.2. Let E: be the random vertex at which the ℬ makes its :-th query when

it is run on G; If ℬ terminates before making : queries, define E: := ⊥. Let ℰ denote the
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event that in at most 1032
queries, the computation of ℬ does not reach a vertex E such that

PrG∼�[,(G) = 0 | G ∈ E] · PrG∼�[,(G) = 1 | G ∈ E] ≤ 1

9
. Since ℬ computes , on the supports of �0

and �1, therefore if ℰ happens then the computation of ℬ does not reach a leaf within 1032

queries. We split the proof into the following two cases.

Case 1: Pr[ℰ] < 3

4
.

Condition on the event that the computation reaches a vertex E ofℬ for which PrG∼�[,(G) =
0 | G ∈ E] · PrG∼�[,(G) = 1 | G ∈ E] ≤ 1

9
holds. In this case, one of PrG∼�[,(G) = 0 | G ∈ E]

and PrG∼�[,(G) = 1 | G ∈ E] is at most 1/3. Hence, | PrG∼�[,(G) = 0 | G ∈ E] − PrG∼�[,(G) =
1 | G ∈ E]| ≥ 1/3. Let F be the random leaf of the subtree of ℬ′ rooted at E at which the

computation ends. The probability that ℬ′ errs is at most

EF

[
1

2

− 1

2

���� Pr

G∼�
[,(G) = 0 | G ∈ F] − Pr

G∼�
[,(G) = 1 | G ∈ F]

����]
≤ 1

2

− 1

2

����EF [
Pr

G∼�
[,(G) = 0 | G ∈ F]

]
− EF

[
Pr

G∼�
[,(G) = 1 | G ∈ F]

] ����
(By Jensen’s inequality and linearity of expectation)

=
1

2

− 1

2

���� Pr

G∼�
[,(G) = 0 | G ∈ E] − Pr

G∼�
[,(G) = 1 | G ∈ E]

���� ≤ 1

3

.

Thus we have shown that conditioned on ℰ the probability that ℬ′ errs is at most
1

3
.

Since ℬ′ errs with probability at most 1/2 when ℰ happens due to the decision in step 1,

therefore the probability that ℬ′ errs is at most
1

4
· 1

3
+ 3

4
· 1

2
= 11

24
< 1

2
.

Case 2: Pr[ℰ] ≥ 3

4
.

Let 0 9 := (8 9 , G8 9 ) be the tuple formed by the index and value of the random input variable

queried at the 9-th step by ℬ′; if ℬ′ terminates before making 9 queries (i. e., E 9 = ⊥) or E 9 is
a leaf ofℬ, then define 8 9 , G8 9 := ⊥ . Note that the sequence (01 , . . . , 01032) uniquely specifies

a leaf of ℬ′, and vice versa. Let I(·, ·) denote the mutual information. (See Appendix C for

the definitions and results from information theory used in this paper.) We prove the

following claim in Section 6.1.

Claim 6.3. If Pr[ℰ] ≥ 3

4
, then I(01 , . . . , 01032 : ,(G)) ≥ 1

40
.

Thus if Pr[ℰ] ≥ 3

4
, Claim 6.3 implies that

H(,(G) | 01 , . . . 01032) ≤ 1 − 1

40

=
39

40

. (6.1)

Let ℒ be the set of leaves ℓ of ℬ′ such that H(,(G) | G ∈ ℓ ) ≤ 79

80
. For each ℓ ∈ ℒ,

min1 PrG∼�[,(G) = 1 | G ∈ ℓ ] ≤ 9

20
. Conditioned on (01 , . . . , 01032) ∈ ℒ, the probability that

ℬ′ errs is at most
9

20
. By Markov’s inequality and (6.1), it follows that Pr[(01 , . . . , 01032) ∈

ℒ] ≥ 1

79
. Thus ℬ′ errs with probability at most

1

79
· 9

20
+ 78

79
· 1

2
< 1

2
.
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�

This completes the proof of Theorem 1.7. �

6.1 Proof of Claim 6.3

Let E be a vertex in ℬ. Define Δ(E) as follows.6

Δ(E) :=


| PrG∼�0

[G8 = 0 | G ∈ E] − PrG∼�1
[G8 = 0 | G ∈ E]|

if E ≠ ⊥ and PrG∼�1 [G ∈ E] > 0 for 1 ∈ {0, 1},
1 otherwise.

The following claim shows that if Δ(E) is large, the query outcome of E contains significant

information about ,(G).

Claim 6.4. Let E be a vertex in ℬ. Let variable G8 be queried at E. Then,

I(,(G) : G8 | G ∈ E) ≥ 8

(
Pr

G∼�
[,(G) = 0 | G ∈ E] · Pr

G∼�
[,(G) = 1 | G ∈ E] · Δ(E)

)
2

.

Proof. Define 1 := ,(G). Condition on the event G ∈ E. Recall from Appendix C that (1 ⊗ G8)
is the distribution over pairs of bits, where the the first and the second bit are distributed

independently according to the distributions of 1 and G8 , respectively. Fact C.7 implies that

I(1 : G8) = D((1, G8)| |(1 ⊗ G8))7. Now, Pinsker’s inequality (Theorem C.9) implies that

D((1, G8)| |(1 ⊗ G8)) ≥
1

2

| |(1, G8) − (1 ⊗ G8)| |2
1
. (6.2)

Next, we bound | |(1, G8) − (1 ⊗ G8)| |1. To this end, we fix bits I1 , I2 ∈ {0, 1}, and bound

| Pr[(1, G8) = (I1 , I2)] − Pr[(1 ⊗ G8) = (I1 , I2)]|. We have that,

Pr[(1, G8) = (I1 , I2)] = Pr[1 = I1]Pr[G8 = I2 | 1 = I1]. (6.3)

Now,

Pr[(1 ⊗ G8) = (I1 , I2)] = Pr[1 = I1]Pr[G8 = I2]
= Pr[1 = I1](Pr[1 = I1]Pr[G8 = I2 | 1 = I1]+

Pr[1 = I1]Pr[G8 = I2 | 1 = I1]). (6.4)

Taking the absolute difference of (6.4) and (6.3) we have that,

| Pr[(1, G8) = (I1 , I2)] − Pr[(1 ⊗ G8) = (I1 , I2)]|
= Pr[1 = I1] · Pr[1 = I1] · Δ(E) = Pr[1 = 0] · Pr[1 = 1] · Δ(E) (6.5)

The Claim follows by adding (6.5) over I1 , I2 and using (6.2). �

6Recall that we mentioned Δ(E) in Section 1.3.

7See Appendix C for definition of Kullback-Leibler divergence and L
1
-distance.
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Let ℬ be run on a random input G sampled from �. The next claim proves a lower bound on

the expected sum of Δ(E) for the random vertices E in the transcript of ℬ. Recall from the proof

of Claim 6.2 that E: is the random vertex at which the :-th query is made; If ℬ terminates before

making : queries, define E: := ⊥. Note that if ℬ terminates before making C queries, EC = ⊥ and

Δ(EC) = 1.

Claim 6.5. Let 2 be any positive integer. Then,

1032∑
:=1

E[Δ(E:) | ℰ] ≥
132

20

.

To prove Claim 6.5 we need the following claim.

Claim 6.6.
103∑
:=1

E[Δ(E:) | ℰ] ≥
13

20

.

Proof of Claim 6.6. Let us sample vertices D: of ℬ as follows:

1. Set I =

{
1 with probability PrG∼�[,(G) = 1],
0 with probability PrG∼�[,(G) = 0]

2. Run P(ℬ , �0 , �1) on the 1-bit input I.

3. Let D: be the vertex E of ℬ in the beginning of the :-th iteration of the while loop of

Algorithm 2. If the simulation stops before : iterations, set D: := ⊥. Return (D:):=1,....

By Theorem 4.2, the transcripts (D:):=1,2,... and (E:):=1,2,... have the same distribution.

Now, since E[N1] ≤ "(,) = 3, we have by Markov’s inequality that the probability that

P(ℬ , �0 , �1) sets QUERY
1
to 1 within first 103 iterations of the while loop, is at least 9/10. Note

that conditioned on the event that the computation of P(ℬ , �0 , �1) is at vertex E ofℬ that queries

the input bit G8 , the probability that the random real number A generated in the same iteration

lies in the interval [min1 PrG8∼�1 [G8 = 0 | G ∈ E],max1 PrG8∼�1 [G8 = 0 | G ∈ E]] is exactly Δ(E). We

have,

103∑
:=1

E[Δ(E:) | ℰ] =
103∑
:=1

E[Δ(D:) | ℰ]

≥ Pr[QUERY
1
is set to to 1 within first 103 iterations | ℰ]

(by union bound)

≥ Pr[QUERY
1
is set to to 1 within first 103 iterations] − Pr[ℰ]

≥ 9

10

− 1

4

=
13

20

.

�
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The following observation will be useful in the proof of Claim 6.5.

Observation 6.7. Let E be any node of ℬ, such that the associated subcube has non-empty

intersections with the supports of both �0 and �1. Let �′
0

:= �0 | E and �′
1

:= �1 | E. Let ℬE
denote the subtree of ℬ rooted at E. Then ℬE is an optimal decision tree for �′

0
and �′

1
.

Proof. If ℬE is not an optimal decision tree for �′
0
and �′

1
then we could replace it by an optimal

decision tree for �′
0
and �′

1
, and for the resultant decision tree ℬ′, the expected value ofN1 in

P(ℬ′, �0 , �1) will be smaller than that in P(ℬ , �0 , �1). This will contradict the optimality of

ℬ. �

Proof of Claim 6.5. For 8 = 0, . . . , 2 − 1, let F be any vertex at depth 1083 + 1 consistent with ℰ,
such that PrG∼�0

[G ∈ F], PrG∼�1
[G ∈ F] ≠ 0. Consider the subtree T of ℬ rooted at F. Let F1 := F

and Fℓ be the random vertex at depth ℓ of T, when T is run on a random input from � | F, or⊥ if

T terminates before ℓ queries. By Observation 6.7, T is an optimal decision tree for distributions

�′
0

:= �0 | F, �′
1

:= �1 | F. From Claim 6.6 we have that,

103∑
ℓ=1

E[Δ(Fℓ ) | ℰ] ≥
13

20

, (6.6)

where Δ(Fℓ ) is with respect to distributions �′
0
and �′

1
. Since �′

0
| Fℓ = �0 | Fℓ and �′

1
| Fℓ = �1 |

Fℓ , Δ(Fℓ ) in (6.6) is also with respect to distributions �0 and �1. Now, when F is the random

vertex E1083+1, Fℓ is the random vertex E1083+ℓ . Thus from (6.6) we have that,

10(8+1)3∑
:=1083+1

E[Δ(E:) | ℰ] ≥
13

20

. (6.7)

The claim follows by adding (6.7) over 8 = 0, . . . , 2 − 1. �

Now we are ready to prove Claim 6.3. By setting 2 = 3 and invoking Claim 6.5 we have,

1032∑
C=1

E[Δ(EC) | ℰ] ≥
133

20

. (6.8)

Let E9 be the event PrG∼�0
[G ∈ E 9] ≠ 0∧PrG∼�1

[G ∈ E 9] ≠ 0∧ E 9 ≠ ⊥ (i. e., E 9 is a vertex of ℬ and is

not a leaf). Note that if E 9 ≠ ⊥ and E 9 is not a leaf of ℬ, E 9 is determined by (01 , . . . , 0 9−1) and vice

versa, and hence I(0 9 : ,(G) | 01 , . . . , 0 9−1) = I(G8 9 : ,(G) | E 9). If E 9 = ⊥ or E 9 is a leaf ofℬ, then ,(G)
is determined by (01 , . . . , 08−1), and G8 9 = ⊥; thus, I(0 9 : ,(G) | 01 , . . . , 0 9−1) = I(G8 9 : ,(G) | E 9) = 0.
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Thus we have,

I(01 , . . . , 01032 : ,(G))

=

1032∑
9=1

I(0 9 : ,(G) | 01 , . . . , 0 9−1) (By the chain rule of mutual information

(Theorem C.5))

=

1032∑
9=1

I(G8 9 : ,(G) | E 9) (From the discussion above)

≥ 8

1032∑
9=1

E
[
1E9 ·

[
Pr[,(G) = 0 | G ∈ E 9] · Pr[,(G) = 1 | G ∈ E 9] · Δ(E 9)

]
2

]
(From Claim 6.4) (6.9)

≥ 8

1032∑
9=1

Pr[ℰ] · E
[ [

Pr[,(G) = 0 | G ∈ E 9] · Pr[,(G) = 1 | G ∈ E 9] · Δ(E 9)
]

2 | ℰ
]

(Conditioned on ℰ ,E9 happens with probability 1

for each 9 ≤ 1032
)

≥ 8

1032∑
9=1

3

4

· 1
9

· E[Δ(E 9)2 | ℰ] (By the assumption Pr[ℰ] ≥ 3

4
)

=
2

3

1032∑
9=1

E[Δ(E 9)2 | ℰ]

≥ 2

3

1032∑
9=1

(
E[Δ(E 9) | ℰ]

)
2

(By Jensen’s inequality)

≥ 2

3

· 1

1032

©«
1032∑
9=1

E[Δ(E 9) | ℰ]ª®¬
2

(By Cauchy-Schwarz inequality)

≥ 1

40

. (From (6.8)) (6.10)

7 Tightness

In this section we prove Theorem 1.2. We construct a Boolean relation 50 ⊆ {0, 1}= × {0, 1}= (i. e.,
S = {0, 1}=) and a promise function ,0 ⊆ {0, 1}=×{0, 1} (i. e.,< = =), such thatℝ4/9( 50) ∈ Θ(

√
=),

ℝ1/3(,0) ∈ Θ(=) and ℝ1/3( 50 ◦ ,=
0
) ∈ Θ(=).
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For strings G = (G1 , . . . , G=), I = (I1 , . . . , G=) in {0, 1}= , let G⊕ I be the string (G1⊕ I1 , . . . , G= ⊕
I=) obtained by taking their bitwise XOR. Let |G | stand for theHamming weight |{8 ∈ [=] : G8 = 1}|
of G. We define 50 as follows:

50
def

=

{
(0, I) ∈ {0, 1}= × {0, 1}=

��� |0 ⊕ I | ≤ =

2

−
√
=
}

Now we define ,0 by specifying ,−1

0
(0) and ,−1

0
(1).

,−1

0
(0) def=

{
(G, 0)

��� G ∈ {0, 1}= , |G | ≤ =

2

−
√
=
}
,

,−1

0
(1) def=

{
(G, 1)

��� G ∈ {0, 1}= , |G | ≥ =

2

+
√
=
}
.

,0 is a gap-majority function with specific parameters. The two-party version of ,0 is the

gap-Hamming-Distance problem. It has been studied before in the context of communication

complexity [8]. We now determine the randomized query complexities of 50 , ,0 and 50 ◦ ,=
0
.

Claim 7.1. (i) ℝ4/9( 50) ∈ Ω(
√
=).

(ii) ℝ1/3(,0) ∈ Ω(=).

(iii) ℝ&( 50 ◦ ,=
0
) ∈ $(=) for any & ∈ Ω(1).

Theorem 1.2 follows from Theorem 1.5 and Claim 7.1 with & set to 1

3
.

Proof of Claim 7.1. (i) Assume that a deterministic protocol of cost : solves 50 with respect to

the uniform input distribution with error at most 4/9. Such a protocol partitions {0, 1}=
into (at most) 2

:
subcubes, each marked by some “answer” (an element from {0, 1}=). In

particular, more than 2
= − 2

=−4
points belong to subcubes of size at least 2

=−:−4
– in other

words, to subcubes of codimension at most : + 4. As more than
15

16
fraction of all points

belong to such subcubes and the total protocol error is at most 4/9, there exists at least

one subcube of codimension : + 4, on which the protocol errs with probability less than

4

9
· 16

15
< 1/2.

The symmetry in the definition of 50 allows us to assume without loss of generality that

the subcube is the set �
def

= 0
:+4 ◦ {0, 1}=−:−4

, where “◦” denotes string concatenation. It is

easy to see that the “answer” that would minimize the error probability with respect to

this subcube can be any binary string starting with “0
:+4

”, so let us assume that the actual

label is 0
=
. LetUℓ denote uniform distribution on {0, 1}= . Then

Pr [error | / ∈ �] = Pr
/′∼U=−:−4

[
|/′ | ≤ =

2

−
√
=
]
< 1/2,

which implies that : + 4 ≥ 2

√
=, as a uniformly-random binary string of length more than

= − 2

√
= would have more than

=
2
−
√
= “ones” with probability at least 1/2.
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(ii) A randomized query protocol of cost : and error 1/3 for ,0 would trivially imply existence

of a randomized communication protocol of cost at most 2: and error 1/3 for the bipartite
problem Gap-Hamming-Distance:

���(-,.) def=


0 if |- ⊕ . | ≤ =

2
−
√
=;

1 if |- ⊕ . | ≥ =
2
+
√
=;

∗ otherwise,

and it has been demonstrated by Chakrabarti and Regev [8] that the complexity of this

problem for any constant error is Ω(=).

(iii) Consider the following protocol for computing 50 (,0(G1), . . . , ,0(G=)), where G8 ∈ {0, 1}= :
For every 8 ∈ [=], let 08 = G8(98), where 98 ⊂∼ [=] – that is, 08 is a uniformly-random bit of G8 .

Then

�� {8 |08 = ,0(G8)}
��
– the expected number of “correctly guessed” values of 08 – is at

least
=
2
+
√
=; intuitively, this means that the probability that 01 , . . . , 0= is a right answer

to 50 (,0(G1), . . . , ,0(G=)) is “non-trivially high” – to “boost” this probability, we will use

several “probes” from every G8 .

For < a power of 3, let

�< : {0, 1}< → {0, 1}

be the Boolean function represented by a complete ternary tree of depth log
3
< with leaves

labelled by the < input variables naturally ordered and vertices computing the majority:

Maj3(I1 , I2 , I3)
def

= (I1 ∧ I2) ∨ (I1 ∧ I3) ∨ (I2 ∧ I3).

Protocol: For an integer 3& (to be fixed later), independently choose 98 ,: ⊂∼ [=] for 8 ∈ [=]
and : ∈ [33& ]. Let 08

def

= �
3
3&

(
G8(98 ,1), . . . , G8(98 ,33& )

)
and output “01 , . . . , 0=”.8

The behaviour of a single Maj3(G8(98 ,1), G8(98 ,2), G8(98 ,3)) is as follows. For � ∈ (0, 1/2]:

Pr
[
Maj3(G8(98 ,1), G8(98 ,2), G8(98 ,3)) = ,0(G8)

��� ���|G8 | − =
2

��� = � · =
]

= (1
2

+ �)3 + 3 · (1
2

+ �)2 · (1
2

− �) = 1

2

+ 3�
2

− 2�3

> min

{
1

2

+ 5�
4

,
3

4

}
.

The same analysis applies to every node in the tree representation of the function �, so:

Pr
[
08 = ,0(G8)

��� ���|G8 | − =
2

��� ≥ √=] > min

{
1

2

+ (
5/4)3&√
=
,
3

4

}
.

8Here we are using �
3
3& (·) for approximating the value of ,

0
(G8), instead of the majority function, which would

look more natural here (moreover, it is easy to see that the function � is somewhat less efficient for the task). The

symmetry appearing in the tree representation of the function � simplifies its analysis considerably, while the

resulting complexity is sufficient for our needs.

THEORY OF COMPUTING, Volume 19 (9), 2023, pp. 1–35 28

http://dx.doi.org/10.4086/toc


OPTIMAL COMPOSITION THEOREM FOR RANDOMIZED QUERY COMPLEXITY

As long as 3& ∈ >(log =), it holds that (5/4)3& ≤
√
=

4
for sufficiently large =, and so:

Pr [08 = ,0(G8) | ,0(G8) ≠ ∗] >
1

2

+ (
5/4)3&√
=
.

Note that 01 , . . . , 0= is a wrong answer to 50 (,0(G1), . . . , ,0(G=)) only if

�� {8 |08 = ,0(G8)}
�� <

=
2
+
√
=, so by a Bernstein-type tail bound, as given in [2], it follows that

Pr[The protocol errs] < exp

(
−1/2 ·

(
(5/4)3& − 1

)
2

)
.

Accordingly, 3& ∈ $(1) suffices for any & ∈ Ω(1) and the result follows.

�

A Minimax principle: proof of Fact 2.4

Fix an integer ℓ . Let Dℓ be the finite set of all deterministic query algorithms on : bits with

worst-case complexity at most ℓ . Letℋ: := {0, 1}: . For algorithm A ∈ Dℓ and input G ∈ ℋ: , let

E(A, G) = 1 if (G,A(G)) ∉ ℎ, and 0 otherwise. By von Neumann’s minimax principle,

min

�
max

�

∑
A∈Dℓ ,G∈ℋ:

�(A)E(A, G)�(G) = max

�
min

�

∑
A∈Dℓ ,G∈ℋ:

�(A)E(A, G)�(G), (A.1)

where � and � range over probability distributions overDℓ andℋ: , respectively. Note that in

equation (A.1), we can assume that the maximum in the left hand side is over point distributions

onℋ: , i. e., distributions that assign weight 1 to some input G ∈ ℋ: . Similarly we can assume

that the minimum in the right hand side is over point distributions onDℓ . Thus we have that,

min

�
max

G∈ℋ:

∑
A∈Dℓ

�(A)E(A, G) = max

�
min

A∈Dℓ

∑
G∈ℋ:

E(A, G)�(G). (A.2)

From equation (A.2) it follows that

ℝ&(ℎ) = min

{
ℓ

�����min

�
max

G∈ℋ:

∑
A∈Dℓ

�(A)E(A, G) ≤ &

}
(where � ranges over all probability distributions onDℓ )

= min

ℓ
������max

�
min

A∈Dℓ

∑
G∈ℋ:

E(A, G)�(G) ≤ &


(where � ranges over all probability distributions onℋ:)

= max

�
min

ℓ
������ min

A∈Dℓ

∑
G∈ℋ:

E(A, G)�(G) ≤ &


= D

�
& (ℎ).
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B Alternative characterization of sabotage complexity

Wefirst go over the standarddefinition of sabotage complexity from [7]. Let , ⊆ {0, 1}<×{0, 1} be
a partial function. From ,, define a partial function ,sab : % → {∗, †}, where now % ⊆ {0, 1, ∗, †}=
is defined in the following way. Let %∗ ⊆ {0, 1, ∗} be the largest set such that for all I ∈ %∗ there
exist G, H with ,(G) ≠ ,(H) and both G and H are consistent with the non-star coordinates of I.

Define %† ⊆ {0, 1, †} analogously with † instead of ∗. Then % = %∗∪%†. Finally, define ,sab(I) = ∗
if I ∈ %∗ and ,sab(I) = † if I ∈ %†. The sabotage complexity of , is defined as ℝS(,) = '0(,sab).

For a tree ) computing ,, and strings G, H such that ,(G) ≠ ,(H), let sep)(G, H) denote the

depth of the node E in ) such that G and H both reach E yet G@(E) ≠ H@(E) where @(E) is the index
queried at node E. We have the following alternative characterization of sabotage complexity.

Theorem B.1. Let , ⊆ {0, 1}< × {0, 1} be a partial function. Then

ℝS(,) = min

T
max
G,H

,(G)≠,(H)

E)∼T [sep)(G, H)]

= max

?
min

)
E(G,H)∼?[sep)(G, H)] .

In the first equation the minimum is taken over zero-error randomized algorithms T for

,. In the second equation, the maximum is taken over distributions over pairs (G, H) where

,(G) = 0, ,(H) = 1, and the minimum is taken over deterministic trees ) computing ,.

Proof. That the right hand side of the first line is equal to the second line follows by von

Neumann’s minimax theorem [18].

Now we focus on establishing the first line. We first show that ℝS(,) is at most the right

hand side of the first line. Let T ∗ achieve the minimum of the expression on the right hand

side. Let I ∈ % be any sabotaged input. Then there are G∗ , H∗ with ,(G∗) ≠ ,(H∗) such that G∗

and H∗ only differ where I has special symbols. Thus any query that separates G∗ and H∗ will

also find a special symbol. The expected number of queries to separate G∗ and H∗ is at most

maxG,H E)∼T ∗[sep)(G, H)], thus the left hand side is at most the right hand side.

For the other direction, let T ∗ be an optimal zero-error randomized algorithm computing

,sab. For any G, H with ,(G) ≠ ,(H) we can create I∗ ∈ %∗ such that I∗ has ∗ in those positions

where G, H disagree, and I∗ agrees with G, H in those positions where they agree with each other..

Let I† equal I∗ with ∗ replaced by †. Now T ∗ is able to distinguish between I∗ and I† using an

expected number of queries that is at most ℝS(,). Any query that distinguishes I∗ and I† is
also a query that separates G and H, as I∗ and I† only differ where G and H do. This means

E)∼T ∗[sep)(G, H)] ≤ ℝS(,) ,

showing that the right hand side is at most the left hand side. �
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C Information Theory

Let - be a random variable supported on a finite set {G1 , . . . , GB}. Let ℰ be any event in the

same probability space. Let ℙ[·] denote the probability of any event. The conditional entropy
H(- | ℰ) of - conditioned on ℰ is defined as follows.

Definition C.1 (Conditional entropy).

H(- | ℰ) :=

B∑
8=1

ℙ[- = G8 | ℰ] log
2

1

ℙ[- = G8 | ℰ]
.

An important special case is when ℰ is the entire sample space. In that case the above

conditional entropy is referred to as the entropy H(-) of -.

Definition C.2 (Entropy).

H(-) :=

B∑
8=1

ℙ[- = G8] log
2

1

ℙ[- = G8]
.

Let . be another random variable in the same probability space as -, taking values from a

finite set {H1 , . . . , HC}. Then the conditional entropy of - conditioned on ., H(- | .), is defined
as follows.

Definition C.3.

H(- | .) =
C∑
8=1

ℙ[. = H8] · H(- | . = H8).

Definition C.4 (Mutual information). Let -, . and / be two random variables in the same

probability space, taking values from finite sets. The mutual information between - and .

conditioned on /, I(-;. | /), is defined as follows.

I(-;. | /) := H(- | /) − H(- | ., /).

It can be shown that I(-;. | /) is symmetric in - and .: I(-;. | /) = I(.;- | /) = H(. |
/) − H(. | -, /).
Theorem C.5 (Chain rule of mutual information). Let -1 , . . . , -: , ., / be random variables in the
same probability space, taking values from finite sets. Then,

I(-1 , . . . , -: : . | /) =
:∑
8=1

I(-8 : . | /, -1 , . . . , -8−1).

Definition C.6 (Kullback-Leibler Divergence). Given two probability distributions P and ℚ on a

finite setU , the Kullback-Leibler divergence from ℚ to P, denoted by D(P| |ℚ), is defined as:

D(P| |Q) := −
∑
D∈U

P(D) log

P(D)
Q(D) .
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Given two random variables, X and Y, taking values in a finite set U , let X ⊗ Y be the

distribution over ordered pairs of elements ofU (i. e., over elements ofU ×U), where the first

and the second element are sampled independently according to the distributions of X and Y,
respectively. Let (X, Y) denote the joint distribution of X and Y. The following fact can be easily

verified.

Fact C.7. I(X : Y) = D((X,Y)| |(X ⊗ Y)).

Definition C.8. Given two probability distributions P and Q on a finite setU , the L1-distance
between P and Q, denoted by | |P −Q| |1, is defined as:

| |P −Q| |1 :=
∑
D∈U
|P(D) −Q(D)|.

Pinsker’s inequality, stated below, bounds D(% | |&) in terms of |P(D) −Q(D)| from below.

Theorem C.9 (Pinsker’s inequality). Given two probability distributions P and Q on a finite setU ,

D(P| |Q) ≥ 1

2

| |P −Q| |2
1
.
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